RESUMO
In the setting of pronounced inflammation, changes in the epithelium may overlap with neoplasia, often rendering it impossible to establish a diagnosis with certainty in daily clinical practice. Here, we discuss the underlying molecular mechanisms driving tissue response during persistent inflammatory signaling along with the potential association with cancer in the gastrointestinal tract, pancreas, extrahepatic bile ducts, and liver. We highlight the histopathological challenges encountered in the diagnosis of chronic inflammation in routine practice and pinpoint tissue-based biomarkers that could complement morphology to differentiate reactive from dysplastic or cancerous lesions. We refer to the advantages and limitations of existing biomarkers employing immunohistochemistry and point to promising new markers, including the generation of novel antibodies targeting mutant proteins, miRNAs, and array assays. Advancements in experimental models, including mouse and 3D models, have improved our understanding of tissue response. The integration of digital pathology along with artificial intelligence may also complement routine visual inspections. Navigating through tissue responses in various chronic inflammatory contexts will help us develop novel and reliable biomarkers that will improve diagnostic decisions and ultimately patient treatment.
Assuntos
Inteligência Artificial , Neoplasias , Humanos , Animais , Camundongos , Neoplasias/diagnóstico , Inflamação , Biomarcadores , Hiperplasia , Sistema DigestórioRESUMO
BACKGROUND: Chemotherapy (CT) is central to the treatment of triple negative breast cancer (TNBC), but drug toxicity and resistance place strong restrictions on treatment regimes. Fasting sensitizes cancer cells to a range of chemotherapeutic agents and also ameliorates CT-associated adverse effects. However, the molecular mechanism(s) by which fasting, or short-term starvation (STS), improves the efficacy of CT is poorly characterized. METHODS: The differential responses of breast cancer or near normal cell lines to combined STS and CT were assessed by cellular viability and integrity assays (Hoechst and PI staining, MTT or H2DCFDA staining, immunofluorescence), metabolic profiling (Seahorse analysis, metabolomics), gene expression (quantitative real-time PCR) and iRNA-mediated silencing. The clinical significance of the in vitro data was evaluated by bioinformatical integration of transcriptomic data from patient data bases: The Cancer Genome Atlas (TCGA), European Genome-phenome Archive (EGA), Gene Expression Omnibus (GEO) and a TNBC cohort. We further examined the translatability of our findings in vivo by establishing a murine syngeneic orthotopic mammary tumor-bearing model. RESULTS: We provide mechanistic insights into how preconditioning with STS enhances the susceptibility of breast cancer cells to CT. We showed that combined STS and CT enhanced cell death and increased reactive oxygen species (ROS) levels, in association with higher levels of DNA damage and decreased mRNA levels for the NRF2 targets genes NQO1 and TXNRD1 in TNBC cells compared to near normal cells. ROS enhancement was associated with compromised mitochondrial respiration and changes in the metabolic profile, which have a significant clinical prognostic and predictive value. Furthermore, we validate the safety and efficacy of combined periodic hypocaloric diet and CT in a TNBC mouse model. CONCLUSIONS: Our in vitro, in vivo and clinical findings provide a robust rationale for clinical trials on the therapeutic benefit of short-term caloric restriction as an adjuvant to CT in triple breast cancer treatment.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Dieta Redutora , Espécies Reativas de Oxigênio , ObesidadeRESUMO
We recently characterized the association between DNA damage and immunoresponse in vivo in colonic mucosa of mice infected with a Salmonella Typhimurium strain expressing a genotoxin, known as typhoid toxin. In this protocol, we describe how to assess the extent and features of infiltrating macrophages by double immunofluorescence. Total macrophage population was determined using an F4/80 antibody, whereas the specific M2-like population was assessed using a CD206 antibody. For complete details on the use and execution of this protocol, please refer to Martin et al. (2021).
Assuntos
Mucosa Intestinal , Macrófagos , Animais , Colo , Imunofluorescência , Camundongos , Salmonella typhimuriumRESUMO
BACKGROUND/AIM: Nanomedicine is a promising scientific field that exploits the unique properties of innovative nanomaterials, providing alternative solutions in diagnostics, prevention and therapeutics. Titanium dioxide nanoparticles (TiO2 NPs) have a great spectrum of photocatalytic antibacterial and anticancer applications. The chemical modification of TiO2 optimizes its bioactive performance. The aim of this study was the development of silver modified NPs (Ag/TiO2 NPs) with anticancer potential. MATERIALS AND METHODS: Ag/TiO2 NPs were prepared through the sol-gel method, were fully characterized and were tested on cultured breast cancer epithelial cells (MCF-7 and MDA-MB-231). The MTT colorimetric assay was used to estimate cellular viability. Western blot analysis of protein expression along with a DNA-laddering assay were employed for apoptosis detection. RESULTS AND CONCLUSION: We show that photo-activated Ag/TiO2 NPs exhibited significant cytotoxicity on the highly malignant MDA-MB-231 cancer cells, inducing apoptosis, while MCF-7 cells that are characterized by low invasive properties were unaffected under the same conditions.
Assuntos
Nanomedicina/métodos , Nanoestruturas/química , Neoplasias/induzido quimicamente , Prata/química , Titânio/uso terapêutico , Humanos , Titânio/farmacologiaRESUMO
Bacterial genotoxins cause DNA damage in eukaryotic cells, resulting in activation of the DNA damage response (DDR) in vitro. These toxins are produced by Gram-negative bacteria, enriched in the microbiota of inflammatory bowel disease (IBD) and colorectal cancer (CRC) patients. However, their role in infection remains poorly characterized. We address the role of typhoid toxin in modulation of the host-microbial interaction in health and disease. Infection with a genotoxigenic Salmonella protects mice from intestinal inflammation. We show that the presence of an active genotoxin promotes DNA fragmentation and senescence in vivo, which is uncoupled from an inflammatory response and unexpectedly associated with induction of an anti-inflammatory environment. The anti-inflammatory response is lost when infection occurs in mice with acute colitis. These data highlight a complex context-dependent crosstalk between bacterial-genotoxin-induced DDR and the host immune response, underlining an unexpected role for bacterial genotoxins.
Assuntos
Microambiente Celular , Interações Hospedeiro-Patógeno/imunologia , Toxinas Biológicas/toxicidade , Febre Tifoide/imunologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Microambiente Celular/efeitos dos fármacos , Colite/imunologia , Colite/microbiologia , Colite/patologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade , Salmonella/fisiologiaRESUMO
Infections in humans occur in the context of complex niches where the pathogen interacts with both the host microenvironment and immune response, and the symbiotic microbial community. The polymicrobial nature of many human infections adds a further layer of complexity. The effect of co- or polymicrobial infections can result in enhanced severity due to pathogens cooperative interaction or reduced morbidity because one of the pathogens affects the fitness of the other(s). In this review, the concept of co-infections and polymicrobial interactions in the context of the intestinal mucosa is discussed, focusing on the interplay between the host, the microbiota and the pathogenic organisms. Specifically, we will examine examples of pathogen-cooperative versus -antagonistic behaviour during co- and polymicrobial infections. We discuss: the infection-induced modulation of the host microenvironment and immune responses; the direct modulation of the microorganism's fitness; the potentiation of inflammatory/carcinogenic conditions by polymicrobial biofilms; and the promotion of co-infections by microbial-induced DNA damage. Open questions in this very exciting field are also highlighted.
Assuntos
Coinfecção , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Imunidade , Mucosa Intestinal/imunologia , Interações Microbianas , Animais , Biofilmes , Disbiose , Humanos , SimbioseRESUMO
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is resistant to single-agent immunotherapies. To understand the mechanisms leading to the poor response to this treatment, a better understanding of the PDAC immune landscape is required. The present work aims to study the immune profile in PDAC in relationship to spatial heterogeneity of the tissue microenvironment (TME) in intact tissues. METHODS: Serial section and multiplex in situ analysis were performed in 42 PDAC samples to assess gene and protein expression at single-cell resolution in the: (a) tumor center (TC), (b) invasive front (IF), (c) normal parenchyma adjacent to the tumor, and (d) tumor positive and negative draining lymph nodes (LNs). RESULTS: We observed: (a) enrichment of T cell subpopulations with exhausted and senescent phenotype in the TC, IF and tumor positive LNs; (b) a dominant type 2 immune response in the TME, which is more pronounced in the TC; (c) an emerging role of CD47-SIRPα axis; and (d) a similar immune cell topography independently of the neoadjuvant chemotherapy. CONCLUSION: This study reveals the existence of dysfunctional T lymphocytes with specific spatial distribution, thus opening a new dimension both conceptually and mechanistically in tumor-stroma interaction in PDAC with potential impact on the efficacy of immune-regulatory therapeutic modalities.
RESUMO
Damage to our genomes triggers cellular senescence characterised by stable cell cycle arrest and a pro-inflammatory secretome that prevents the unrestricted growth of cells with pathological potential. In this way, senescence can be considered a powerful innate defence against cancer and viral infection. However, damage accumulated during ageing increases the number of senescent cells and this contributes to the chronic inflammation and deregulation of the immune function, which increases susceptibility to infectious disease in ageing organisms. Bacterial and viral pathogens are masters of exploiting weak points to establish infection and cause devastating diseases. This review considers the emerging importance of senescence in the host-pathogen interaction: we discuss the pathogen exploitation of ageing cells and senescence as a novel hijack target of bacterial pathogens that deploys senescence-inducing toxins to promote infection. The persistent induction of senescence by pathogens, mediated directly through virulence determinants or indirectly through inflammation and chronic infection, also contributes to age-related pathologies such as cancer. This review highlights the dichotomous role of senescence in infection: an innate defence that is exploited by pathogens to cause disease.
Assuntos
Senescência Celular , Interações Hospedeiro-Patógeno , Animais , Bactérias/metabolismo , Microambiente Celular , Humanos , Infecções/patologia , Modelos BiológicosRESUMO
: Bacterial genotoxins (BTGX) induce DNA damage, which results in senescence or apoptosis of the target cells if not properly repaired. Three BTGXs have been identified: the cytolethal distending toxin (CDT) family produced by several Gram-negative bacteria, the typhoid toxin produced by several Salmonella enterica serovars, and colibactin, a peptide-polyketide, produced mainly by the phylogenetic group B2 Escherichia coli. The cellular responses induced by BTGXs resemble those of well-characterized carcinogenic agents, and several lines of evidence indicate that bacteria carrying genotoxin genes can contribute to tumor development under specific circumstances. Given their unusual mode of action, it is still enigmatic why these effectors have been acquired by microbes and what is their role in the context of the biology of the producing bacterium, since it is unlikely that their primary purpose is to induce/promote cancer in the mammalian host. In this review, we will discuss the possibility that the DNA damage induced by BTGX modulates the host immune response, acting as immunomodulator, leading to the establishment of a suitable niche for the producing bacterium. We will further highlight open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.
Assuntos
Toxinas Bacterianas/toxicidade , Dano ao DNA , Fatores Imunológicos/toxicidade , Mutagênicos/toxicidade , Animais , HumanosRESUMO
Several commensal and pathogenic Gram-negative bacteria produce DNA-damaging toxins that are considered bona fide carcinogenic agents. The microbiota of colorectal cancer (CRC) patients is enriched in genotoxin-producing bacteria, but their role in the pathogenesis of CRC is poorly understood. The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in the majority of sporadic CRCs. We investigated whether the loss of APC alters the response of colonic epithelial cells to infection by Salmonella enterica, the only genotoxin-producing bacterium associated with cancer in humans. Using 2D and organotypic 3D cultures, we found that APC deficiency was associated with sustained activation of the DNA damage response, reduced capacity to repair different types of damage, including DNA breaks and oxidative damage, and failure to induce cell cycle arrest. The reduced DNA repair capacity and inability to activate adequate checkpoint responses was associated with increased genomic instability in APC-deficient cells exposed to the genotoxic bacterium. Inhibition of the checkpoint response was dependent on activation of the phosphatidylinositol 3-kinase pathway. These findings highlight the synergistic effect of the loss of APC and infection with genotoxin-producing bacteria in promoting a microenvironment conducive to malignant transformation.
Assuntos
Polipose Adenomatosa do Colo/genética , Colo/metabolismo , Células Epiteliais/metabolismo , Instabilidade Genômica/genética , Fosfatidilinositol 3-Quinases/metabolismo , Infecções por Salmonella/metabolismo , Salmonella enterica/metabolismo , Polipose Adenomatosa do Colo/microbiologia , Polipose Adenomatosa do Colo/patologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Dano ao DNA/genética , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Genes Supressores de Tumor/fisiologia , Humanos , Camundongos , Mutagênicos/metabolismo , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Transdução de Sinais/genética , Microambiente Tumoral/genéticaRESUMO
We have addressed the role of bacterial co-infection in viral oncogenesis using as model Epstein-Barr virus (EBV), a human herpesvirus that causes lymphoid malignancies and epithelial cancers. Infection of EBV carrying epithelial cells with the common oral pathogenic Gram-negative bacterium Aggregatibacter actinomycetemcomitans (Aa) triggered reactivation of the productive virus cycle. Using isogenic Aa strains that differ in the production of the cytolethal distending toxin (CDT) and purified catalytically active or inactive toxin, we found that the CDT acts via induction of DNA double strand breaks and activation of the Ataxia Telangectasia Mutated (ATM) kinase. Exposure of EBV-negative epithelial cells to the virus in the presence of sub-lethal doses of CDT was accompanied by the accumulation of latently infected cells exhibiting multiple signs of genomic instability. These findings illustrate a scenario where co-infection with certain bacterial species may favor the establishment of a microenvironment conducive to the EBV-induced malignant transformation of epithelial cells.
Assuntos
Aggregatibacter actinomycetemcomitans/fisiologia , Transformação Celular Neoplásica , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Herpesvirus Humano 4/fisiologia , Ativação Viral/fisiologia , Toxinas Bacterianas/farmacologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Interações Microbianas/fisiologia , Mutagênicos/farmacologiaRESUMO
DNA double-strand breaks (DSBs) are critical DNA lesions, which threaten genome stability and cell survival. DSBs are directly induced by ionizing radiation (IR) and radiomimetic agents, including the cytolethal distending toxin (CDT). This bacterial genotoxin harbors a unique DNase-I-like endonuclease activity. Here we studied the role of DSBs induced by CDT and IR as a trigger of autophagy, which is a cellular degradation process involved in cell homeostasis, genome protection and cancer. The regulatory mechanisms of DSB-induced autophagy were analyzed, focusing on the ATM-p53-mediated DNA damage response and AKT signaling in colorectal cancer cells. We show that treatment of cells with CDT or IR increased the levels of the autophagy marker LC3B-II. Consistently, an enhanced formation of autophagosomes and a decrease of the autophagy substrate p62 were observed. Both CDT and IR concomitantly suppressed mTOR signaling and stimulated the autophagic flux. DSBs were demonstrated as the primary trigger of autophagy using a DNase I-defective CDT mutant, which neither induced DSBs nor autophagy. Genetic abrogation of p53 and inhibition of ATM signaling impaired the autophagic flux as revealed by LC3B-II accumulation and reduced formation of autophagic vesicles. Blocking of DSB-induced apoptotic cell death by the pan-caspase inhibitor Z-VAD stimulated autophagy. In line with this, pharmacological inhibition of autophagy increased cell death, while ATG5 knockdown did not affect cell death after DSB induction. Interestingly, both IR and CDT caused AKT activation, which repressed DSB-triggered autophagy independent of the cellular DNA-PK status. Further knockdown and pharmacological inhibitor experiments provided evidence that the negative autophagy regulation was largely attributable to AKT2. Finally, we show that upregulation of CDT-induced autophagy upon AKT inhibition resulted in lower apoptosis and increased cell viability. Collectively, the findings demonstrate that DSBs trigger pro-survival autophagy in an ATM- and p53-dependent manner, which is curtailed by AKT2 signaling.
Assuntos
Neoplasias Colorretais/genética , Quebras de DNA de Cadeia Dupla , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Toxinas Bacterianas/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Bacterial genotoxins, produced by several Gram-negative bacteria, induce DNA damage in the target cells. While the responses induced in the host cells have been extensively studied in vitro, the role of these effectors during the course of infection remains poorly characterized. To address this issue, we assessed the effects of the Salmonella enterica genotoxin, known as typhoid toxin, in in vivo models of murine infection. Immunocompetent mice were infected with isogenic S. enterica, serovar Typhimurium (S. Typhimurium) strains, encoding either a functional or an inactive typhoid toxin. The presence of the genotoxic subunit was detected 10 days post-infection in the liver of infected mice. Unexpectedly, its expression promoted the survival of the host, and was associated with a significant reduction of severe enteritis in the early phases of infection. Immunohistochemical and transcriptomic analysis confirmed the toxin-mediated suppression of the intestinal inflammatory response. The presence of a functional typhoid toxin further induced an increased frequency of asymptomatic carriers. Our data indicate that the typhoid toxin DNA damaging activity increases host survival and favours long-term colonization, highlighting a complex cross-talk between infection, DNA damage response and host immune response. These findings may contribute to understand why such effectors have been evolutionary conserved and horizontally transferred among Gram-negative bacteria.
Assuntos
Infecções Assintomáticas , Doenças Transmissíveis/microbiologia , Mutagênicos/toxicidade , Salmonella typhimurium/patogenicidade , Febre Tifoide/microbiologia , Animais , Intestinos/microbiologia , Macrófagos/microbiologia , Camundongos , VirulênciaRESUMO
Bacterial protein genotoxins target the DNA of eukaryotic cells, causing DNA single and double strand breaks. The final outcome of the intoxication is induction of DNA damage responses and activation of DNA repair pathways. When the damage is beyond repair, the target cell either undergoes apoptosis or enters a permanent quiescent stage, known as cellular senescence. In certain instances, intoxicated cells can survive and proliferate. This event leads to accumulation of genomic instability and acquisition of malignant traits, underlining the carcinogenic potential of these toxins. The toxicity is dependent on the toxins' internalization and trafficking from the extracellular environment to the nucleus, and requires a complex interaction with several cellular membrane compartments: the plasma membrane, the endosomes, the trans Golgi network and the endoplasmic reticulum, and finally the nucleus. This review will discuss the current knowledge of the bacterial genotoxins internalization pathways and will highlight the issues that still remain unanswered. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Assuntos
Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Dano ao DNA , Mutagênicos/metabolismo , Animais , Bactérias/patogenicidade , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Senescência Celular , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Transporte ProteicoRESUMO
Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence) or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending toxin (CDT) family produced by a number of Gram-negative bacteria and the typhoid toxin produced by Salmonella enterica serovar Typhi. The third member, colibactin, is a peptide-polyketide genotoxin, produced by strains belonging to the phylogenetic group B2 of Escherichia coli. This review will present the cellular effects of acute and chronic intoxication or infection with the genotoxins-producing bacteria. The carcinogenic properties and the role of these effectors in the context of the host-microbe interaction will be discussed. We will further highlight the open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.
Assuntos
Infecções Bacterianas/genética , Toxinas Bacterianas/toxicidade , Dano ao DNA , Mutagênicos/toxicidade , Animais , Toxinas Bacterianas/química , Carcinogênese/efeitos dos fármacos , Humanos , Mutagênicos/químicaRESUMO
Integrins are membrane bound receptors that regulate several cellular processes, such as cell adhesion, migration, survival and proliferation, and may contribute to tumor initiation/progression in cells exposed to genotoxic stress. The extent of integrin activation and its role in cell survival upon intoxication with bacterial genotoxins are still poorly characterized. These toxins induce DNA strand breaks in the target cells and activate the DNA damage response (DDR), coordinated by the Ataxia Telangectasia Mutated (ATM) kinase. In the present study, we demonstrate that induction of DNA damage by two bacterial genotoxins promotes activation of integrin ß1, leading to enhanced assembly of focal adhesions and cell spreading on fibronectin, but not on vitronectin. This phenotype is mediated by an ATM-dependent inside-out integrin signaling, and requires the actin cytoskeleton remodeler NET1. The toxin-mediated cell spreading and anchorage-independent survival further relies on ALIX and TSG101, two components of the endosomal sorting complex required for transport (ESCRT), known to regulate integrin intracellular trafficking. These data reveal a novel aspect of the cellular response to bacterial genotoxins, and provide new tools to understand the carcinogenic potential of these effectors in the context of chronic intoxication and infection.
Assuntos
Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Endotoxinas/farmacologia , Adesões Focais/efeitos dos fármacos , Integrina beta1/metabolismo , Mutagênicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Western Blotting , Células CACO-2 , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Imunofluorescência , Adesões Focais/fisiologia , Células HeLa , Humanos , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologiaRESUMO
Cytolethal-distending toxins (CDTs) belong to a family of DNA damage inducing exotoxins that are produced by several Gram-negative bacteria. Salmonella enterica serovar Typhi expresses its CDT (named as Typhoid toxin) only in the Salmonella-containing vacuole (SCV) of infected cells, which requires its export for cell intoxication. The mechanisms of secretion, release in the extracellular space and uptake by bystander cells are poorly understood. We have addressed these issues using a recombinant S. Typhimurium strain, MC71-CDT, where the genes encoding for the PltA, PltB and CdtB subunits of the Typhoid toxin are expressed under control of the endogenous promoters. MC71-CDT grown under conditions that mimic the SCV secreted the holotoxin in outer membrane vesicles (OMVs). Epithelial cells infected with MC71-CDT also secreted OMVs-like vesicles. The release of these extracellular vesicles required an intact SCV and relied on anterograde transport towards the cellular cortex on microtubule and actin tracks. Paracrine internalization of Typhoid toxin-loaded OMVs by bystander cells was dependent on dynamin-1, indicating active endocytosis. The subsequent induction of DNA damage required retrograde transport of the toxin through the Golgi complex. These data provide new insights on the mode of secretion of exotoxins by cells infected with intracellular bacteria.
Assuntos
Toxinas Bacterianas/metabolismo , Salmonella typhi/metabolismo , Salmonella typhimurium/metabolismo , Vesículas Secretórias/metabolismo , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Brefeldina A/farmacologia , Células CACO-2 , Linhagem Celular , Dano ao DNA , Dinamina I/antagonistas & inibidores , Dinamina I/metabolismo , Dinaminas/antagonistas & inibidores , Endocitose , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células HeLa , Humanos , Hidrazonas/farmacologia , Camundongos , Regiões Promotoras Genéticas , Salmonella typhi/genética , Salmonella typhi/patogenicidade , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidadeRESUMO
Epidemiological evidence links chronic bacterial infections to the increased incidence of certain types of cancer but the molecular mechanisms by which bacteria contribute to tumour initiation and progression are still poorly characterized. Here we show that chronic exposure to the genotoxin cytolethal distending toxin (CDT) of Gram-negative bacteria promotes genomic instability and acquisition of phenotypic properties of malignancy in fibroblasts and colon epithelial cells. Cells grown for more than 30 weeks in the presence of sublethal doses of CDT showed increased mutation frequency, and accumulation of chromatin and chromosomal aberrations in the absence of significant alterations of cell cycle distribution, decreased viability or senescence. Cell survival was dependent on sustained activity of the p38 MAP kinase. The ongoing genomic instability was associated with impaired activation of the DNA damage response and failure to efficiently activate cell cycle checkpoints upon exposure to genotoxic stress. Independently selected sublines showed enhanced anchorage-independent growth as assessed by the formation of colonies in semisolid agarose. These findings support the notion that chronic infection by CDT-producing bacteria may promote malignant transformation, and point to the impairment of cellular control mechanisms associated with the detection and repair of DNA damage as critical events in the process.
Assuntos
Toxinas Bacterianas/metabolismo , Dano ao DNA/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Mutagênicos/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , RatosRESUMO
Ubiquitin C-terminal hydrolase-L1 (UCH-L1) is a deubiquitinating enzyme of unknown function that is highly expressed in neurons and overexpressed in several human cancers. UCH-L1 has been implicated in the regulation of phenotypic properties associated with malignant cell growth but the underlying mechanisms have not been elucidated. By comparing cells expressing catalytically active or inactive versions of UCH-L1, we found that the active enzyme enhances cell adhesion, spreading, and migration; inhibits anoikis; and promotes anchorage independent growth. UCH-L1 accumulates at the motile edge of the cell membrane during the initial phases of adhesion, colocalizes with focal adhesion kinase (FAK), p120-catenin, and vinculin, and enhances the formation of focal adhesions, which correlates with enhanced FAK activation. The involvement of UCH-L1 in the regulation of focal adhesions and adherens junctions is supported by coimmunoprecipitation with key components of these complexes, including FAK, paxillin, p120-catenin, ß-catenin, and vinculin. UCH-L1 stabilizes focal adhesion signaling in the absence of adhesion, as assessed by reduced caspase-dependent cleavage of FAK following cell detachment and sustained activity of the AKT signaling pathway. These findings offer new insights on the molecular interactions through which the deubiquitinating enzyme regulates the survival, proliferation, and metastatic potential of malignant cells.
Assuntos
Movimento Celular , Proliferação de Células , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Anoikis , Biocatálise , Western Blotting , Cateninas/metabolismo , Adesão Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Ligação Proteica , Transdução de Sinais , Ubiquitina Tiolesterase/genética , Vinculina/metabolismo , beta Catenina/metabolismo , delta Catenina , Proteína Vermelha FluorescenteRESUMO
The cytolethal distending toxins (CDTs), produced by a variety of Gram-negative pathogenic bacteria, are the first bacterial genotoxins described, since they cause DNA damage in the target cells. CDT is an A-B(2) toxin, where the CdtA and CdtC subunits are required to mediate the binding on the surface of the target cells, allowing internalization of the active CdtB subunit, which is functionally homologous to the mammalian deoxyribonuclease I. The nature of the surface receptor is still poorly characterized, however binding of CDT requires intact lipid rafts, and its internalization occurs via dynamin-dependent endocytosis. The toxin is retrograde transported through the Golgi complex and the endoplasmic reticulum, and subsequently translocated into the nuclear compartment, where it exerts the toxic activity. Cellular intoxication induces DNA damage and activation of the DNA damage responses, which results in arrest of the target cells in the G1 and/or G2 phases of the cell cycle and activation of DNA repair mechanisms. Cells that fail to repair the damage will senesce or undergo apoptosis. This review will focus on the well-characterized aspects of the CDT biology and discuss the questions that still remain unanswered.