Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Pathol ; 49(4): 928-937, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33397216

RESUMO

Digital pathology evolved rapidly, enabling more systematic usage of image analysis and development of artificial intelligence (AI) applications. Here, combined AI models were developed to evaluate hepatocellular hypertrophy in rat liver, using commercial AI-based software on hematoxylin and eosin-stained whole slide images. In a first approach, deep learning-based identification of critical tissue zones (centrilobular, midzonal, and periportal) enabled evaluation of region-specific cell size. Mean cytoplasmic area of hepatocytes was calculated via several sequential algorithms including segmentation in microanatomical structures (separation of sinusoids and vessels from hepatocytes), nuclear detection, and area measurements. An increase in mean cytoplasmic area could be shown in groups given phenobarbital, known to induce hepatocellular hypertrophy when compared to control groups, in multiple studies. Quantitative results correlated with the gold standard: observation and grading performed by board-certified veterinary pathologists, liver weights, and gene expression. Furthermore, as a second approach, we introduce for the first time deep learning-based direct detection of hepatocellular hypertrophy with similar results. Cell hypertrophy is challenging to pick up, particularly in milder cases. Additional evaluation of mean cytoplasmic area or direct detection of hypertrophy, combined with histopathological observations and liver weights, is expected to increase accuracy and repeatability of diagnoses and grading by pathologists.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Algoritmos , Animais , Inteligência Artificial , Hipertrofia , Ratos
2.
Cancer Immunol Res ; 8(7): 895-911, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32312711

RESUMO

The immunoglobulin-like domain containing receptor 2 (ILDR2), a type I transmembrane protein belonging to the B7 family of immunomodulatory receptors, has been described to induce an immunosuppressive effect on T-cell responses. Besides its expression in several nonlymphoid tissue types, we found that ILDR2 was also expressed in fibroblastic reticular cells (FRC) in the stromal part of the lymph node. These immunoregulatory cells were located in the T-cell zone and were essential for the recruitment of naïve T cells and activated dendritic cells to the lymph nodes. Previously, it has been shown that an ILDR2-Fc fusion protein exhibits immunomodulatory effects in several models of autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and type I diabetes. Herein, we report the generation and characterization of a human/mouse/monkey cross-reactive anti-ILDR2 hIgG2 antibody, BAY 1905254, developed to block the immunosuppressive activity of ILDR2 for cancer immunotherapy. BAY 1905254 was shown to promote T-cell activation in vitro and enhance antigen-specific T-cell proliferation and cytotoxicity in vivo in mice. BAY 1905254 also showed potent efficacy in various syngeneic mouse cancer models, and the efficacy was found to correlate with increasing mutational load in the cancer models used. Additive or even synergistic antitumor effects were observed when BAY 1905254 was administered in combination with anti-PD-L1, an immunogenic cell death-inducing chemotherapeutic, or with tumor antigen immunization. Taken together, our data showed that BAY 1905254 is a potential drug candidate for cancer immunotherapy, supporting its further evaluation.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Imunoglobulina G/farmacologia , Ativação Linfocitária/imunologia , Proteínas de Membrana/imunologia , Neoplasias/tratamento farmacológico , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Tolerância Imunológica , Imunoglobulina G/imunologia , Imunoterapia/métodos , Leucócitos Mononucleares/imunologia , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/metabolismo
3.
Invest Radiol ; 52(6): 324-333, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28323657

RESUMO

OBJECTIVES: Retrospective studies in patients with primary brain tumors or other central nervous system pathologies as well as postmortem studies have suggested that gadolinium (Gd) deposition occurs in the dentate nucleus (DN) and globus pallidus (GP) after multiple administrations of primarily linear Gd-based contrast agents (GBCAs). However, this deposition has not been associated with any adverse effects or histopathological alterations. The aim of this preclinical study was to systematically examine differences between linear and macrocyclic GBCAs in their potential to induce changes in brain and skin histology including Gd distribution in high spatial resolution. MATERIALS AND METHODS: Fifty male Wistar-Han rats were randomly allocated into control (saline, n = 10 rats) and 4 GBCA groups (linear GBCAs: gadodiamide and gadopentetate dimeglumine, macrocyclic GBCAs: gadobutrol and gadoteridol; n = 10 rats per group). The animals received 20 daily intravenous injections at a dose of 2.5 mmol Gd/kg body weight. Eight weeks after the last GBCA administration, the animals were killed, and the brain and skin samples were histopathologically assessed (hematoxylin and eosin; cresyl violet [Nissl]) and by immunohistochemistry. The Gd concentration in the skin, bone, brain, and skeletal muscle samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS, n = 4). The spatial Gd distribution in the brain and skin samples was analyzed in cryosections using laser ablation coupled with ICP-MS (LA-ICP-MS, n = 3). For the ultra-high resolution of Gd distribution, brain sections of rats injected with gadodiamide or saline (n = 1) were assessed by scanning electron microscopy coupled to energy dispersive x-ray spectroscopy and transmission electron microscopy, respectively. RESULTS: No histological changes were observed in the brain. In contrast, 4 of 10 animals in the gadodiamide group but none of the animals in other groups showed macroscopic and histological nephrogenic systemic fibrosis-like skin lesions. The Gd concentrations observed in the skin/brain samples (in nanomole Gd per gram of tissue) for each agent were as follows: gadodiamide: 1472 ± 115/11.1 ± 5.1, gadopentetate dimeglumine: 80.8 ± 6.2/13.1 ± 7.3, gadobutrol: 1.1 ± 0.5/0.7 ± 0.4, and gadoteridol: 1.7 ± 0.8/0.5 ± 0.2. The average detected residual Gd concentration in the brain was approximately 15-fold higher for linear than for macrocyclic GBCAs. The highest amounts of Gd found in brain corresponded to less than 0.0002% of the injected dose per gram of tissue. Using LA-ICP-MS, high Gd concentrations in the deep cerebellar nuclei and in the granular layer of the cerebellar cortex were detected only for linear gadodiamide and gadopentetate dimeglumine but not for gadoteridol or gadobutrol. The energy dispersive x-ray spectroscopy analysis revealed Gd-containing spots in the skin of animals administered gadodiamide and gadopentetate dimeglumine. Transmission electron microscopy revealed several Gd-containing spots in the region of the dentate nuclei in the brain of 1 animal injected with gadodiamide. CONCLUSIONS: After repeated high dosing, nephrogenic systemic fibrosis-like macroscopic and histopathological lesions of the skin were observed only in some of the gadodiamide-treated animals. No histopathological findings were detected in the rodent brain. The administration of linear GBCAs was associated with significantly higher Gd concentrations in the brain and skin compared with macrocyclic GBCA administration. The results of LA-ICP-MS demonstrated local accumulation of Gd within the deep cerebellar nuclei and the granular layer only after the administration of linear agents. In summary, the detected low Gd concentrations in the skin and brain were well correlated with the higher kinetic stability of macrocyclic GBCA.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Meios de Contraste/farmacocinética , Gadolínio/farmacocinética , Pele/efeitos dos fármacos , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Encéfalo/ultraestrutura , Meios de Contraste/administração & dosagem , Meios de Contraste/efeitos adversos , Relação Dose-Resposta a Droga , Gadolínio/administração & dosagem , Gadolínio/efeitos adversos , Gadolínio DTPA/administração & dosagem , Gadolínio DTPA/efeitos adversos , Gadolínio DTPA/farmacocinética , Compostos Heterocíclicos/administração & dosagem , Compostos Heterocíclicos/efeitos adversos , Compostos Heterocíclicos/farmacocinética , Injeções Intravenosas , Masculino , Espectrometria de Massas , Modelos Animais , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/efeitos adversos , Compostos Organometálicos/farmacocinética , Ratos , Ratos Wistar , Estudos Retrospectivos , Roedores , Pele/ultraestrutura
4.
Mol Cancer Ther ; 15(4): 583-92, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26832791

RESUMO

Monopolar spindle 1 (Mps1) has been shown to function as the key kinase that activates the spindle assembly checkpoint (SAC) to secure proper distribution of chromosomes to daughter cells. Here, we report the structure and functional characterization of two novel selective Mps1 inhibitors, BAY 1161909 and BAY 1217389, derived from structurally distinct chemical classes. BAY 1161909 and BAY 1217389 inhibited Mps1 kinase activity with IC50 values below 10 nmol/L while showing an excellent selectivity profile. In cellular mechanistic assays, both Mps1 inhibitors abrogated nocodazole-induced SAC activity and induced premature exit from mitosis ("mitotic breakthrough"), resulting in multinuclearity and tumor cell death. Both compounds efficiently inhibited tumor cell proliferation in vitro (IC50 nmol/L range). In vivo, BAY 1161909 and BAY 1217389 achieved moderate efficacy in monotherapy in tumor xenograft studies. However, in line with its unique mode of action, when combined with paclitaxel, low doses of Mps1 inhibitor reduced paclitaxel-induced mitotic arrest by the weakening of SAC activity. As a result, combination therapy strongly improved efficacy over paclitaxel or Mps1 inhibitor monotreatment at the respective MTDs in a broad range of xenograft models, including those showing acquired or intrinsic paclitaxel resistance. Both Mps1 inhibitors showed good tolerability without adding toxicity to paclitaxel monotherapy. These preclinical findings validate the innovative concept of SAC abrogation for cancer therapy and justify clinical proof-of-concept studies evaluating the Mps1 inhibitors BAY 1161909 and BAY 1217389 in combination with antimitotic cancer drugs to enhance their efficacy and potentially overcome resistance. Mol Cancer Ther; 15(4); 583-92. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Mitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Ratos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Genom Data ; 6: 81-2, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26697341

RESUMO

We investigated a glomerulonephritis (GN) model in rats induced by nephrotoxic serum (NTS) which contains antibodies against the glomerular basement membrane (GBM). The anti-GBM GN model in rats is widely used since its biochemical and histopathological characteristics are similar to crescentic nephritis and Goodpasture's disease in humans (Pusey, 2003[2]). Male Wistar Kyoto (WKY) and Sprague-Dawley (SD) rats were dosed once with 1, 2.5 and 5 ml/kg nephrotoxic serum (NTS) or 1.5 and 5 ml/kg NTS, respectively. GN and tubular damage were observed histopathologically in all treated rats after 14 days. To obtain insight into molecular processes during GN pathogenesis, mRNA expression was investigated in WKY and SD kidneys using Affymetrix's GeneChip Rat genome 230_2.0 arrays (GSE64265). The immunopathological processes during GN are still not fully understood and likely involve both innate and adaptive immunity. In the present study, several hundred mRNAs were found deregulated, which functionally were mostly associated with inflammation and regeneration. The ß-chain of the major histocompatibility complex class II RT1.B (Rt1-Bb) and complement component 6 (C6) were identified as two mRNAs differentially expressed between WKY and SD rat strains which could be related to known different susceptibilities to NTS of different rat strains; both were increased in WKY and decreased in SD rats (Pavkovic et al., 2015 [1]). Increased Rt1-Bb expression in WKY rats could indicate a stronger and more persistent cellular reaction of the adaptive immune system in this strain, in line with findings indicating adaptive immune reactions during GN. The complement cascade is also known to be essential for GN development, especially terminal cascade products like C6.

6.
PLoS One ; 10(11): e0142429, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26588841

RESUMO

Human uterine fibroids, benign tumors derived from the smooth muscle layers of the uterus, impose a major health burden to up to 50% of premenopausal women in their daily life. To improve our understanding of this disease, we developed and characterized a patient-derived xenograft model by subcutaneous transplantation of pieces of human uterine fibroid tissue into three different strains of severe combined immunodeficient mice. Engrafted uterine fibroid tissue preserved the classical morphology with interwoven bundles of smooth muscle cells and an abundant deposition of collagenous matrix, similar to uterine fibroids in situ. The grafts expressed both estrogen receptor 1 and progesterone receptor. Additionally, both receptors were up-regulated by estrogen treatment. Growth of the fibroid grafts was dependent on 17ß-estradiol and progesterone supplementation at levels similar to women with the disease and was studied for up to 60 days at maximum. Co-treatment with the antiprogestin mifepristone reduced graft growth (four independent donors, p<0.0001 two-sided t-test), as did treatment with the mTOR inhibitor rapamycin (three independent donors, p<0.0001 two-sided t-test). This in vivo animal model preserves the main histological and functional characteristics of human uterine fibroids, is amenable to intervention by pharmacological treatment, and can thus serve as an adequate model for the development of novel therapies.


Assuntos
Xenoenxertos , Leiomioma/tratamento farmacológico , Leiomioma/patologia , Mifepristona/administração & dosagem , Animais , Modelos Animais de Doenças , Receptor alfa de Estrogênio/biossíntese , Estrogênios/administração & dosagem , Feminino , Humanos , Leiomioma/genética , Camundongos , Camundongos SCID , Receptores de Progesterona/biossíntese
7.
Toxicol Sci ; 145(2): 348-59, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25758243

RESUMO

MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and thus are involved in various physiological and pathological states. Due to their stability in biofluids miRNAs have also been proposed as biomarkers (BMs) for tissue injury. We investigated the usefulness of urinary miRNAs for detection of site-specific renal damage in an antiglomerular basement membrane glomerulonephritis (GN) model in rats by comparing GN-induced urinary miRNAs profiles to traditional and newer protein BMs, and to proximal tubular injury-induced urinary miRNA profiles observed previously after cisplatin (Cp) treatment. Male Wistar Kyoto and Sprague Dawley rats were dosed once with 1, 2.5, and 5 ml/kg nephrotoxic serum (NTS) or 1.5 and 5 ml/kg NTS, respectively. GN and tubular damage were observed histopathologically in all treated rats after 14 days. Although serum creatinine and BUN were not changed, several protein BMs and 74 urinary miRNAs were found to be increased 8 and 14 days after NTS administration. Of these 74 miRNAs, 5 were identified as increased after NTS but not after Cp treatment. Using in situ hybridization two of them, miR-10 b and -100, were found to be localized in distal segments of the nephron, potentially reflecting the tubular injury in those regions. Furthermore, evaluation of both miRNA and mRNA expression in the kidney revealed possible miRNA-mRNA interactions mostly associated with fibrotic and transforming growth factor ß signaling. In conclusion, our investigations support the potential of urinary miRNAs as specific BMs for kidney injury, and suggest a role of miRNAs in pathological processes during GN in the kidney.


Assuntos
Perfilação da Expressão Gênica , Glomerulonefrite/urina , Rim/metabolismo , RNA Mensageiro/urina , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/urina , Animais , Biópsia , Cisplatino , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Marcadores Genéticos , Glomerulonefrite/genética , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Hibridização In Situ , Rim/imunologia , Rim/patologia , Masculino , MicroRNAs/urina , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
8.
J Nucl Med ; 51(10): 1632-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20847178

RESUMO

UNLABELLED: The presence and localization of metastatic bone lesions is important for the staging of the disease and subsequent treatment decisions. Detecting tumor cells would have additional value over the current indirect bone scintigraphy method for detecting areas of elevated skeletal metabolic activity. d-(18)F-fluoromethyl tyrosine (d-(18)F-FMT) has recently shown good uptake and fast elimination, resulting in good tumor-to-background ratios. The potential of d-(18)F-FMT for imaging bone metastases has been investigated. METHODS: 786-O/luciferase human renal adenocarcinoma cells were injected intracardially, resulting in the formation of bone metastases in mice. Small-animal PET was performed 51 and 65 d after tumor cell inoculation. RESULTS: d-(18)F-FMT showed specific uptake in the bone metastases, giving excellent images with a little background in the pancreas. All imaged metastases were histologically confirmed. A bone scan with (18)F-fluoride showed elevated skeletal metabolic activity in the areas of osteolytic lesions. CONCLUSION: d-(18)F-FMT is a useful PET tracer for the detection of bone metastases and should be evaluated in the clinical setting.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Modelos Animais de Doenças , Tirosina/análogos & derivados , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Cintilografia , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA