Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1158287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234803

RESUMO

Introduction: Oleoylethanolamide (OEA), an endogenous N-acylethanolamine acting as a gut-to-brain signal to control food intake and metabolism, has been attracting attention as a target for novel therapies against obesity and eating disorders. Numerous observations suggested that the OEA effects might be peripherally mediated, although they involve central pathways including noradrenergic, histaminergic and oxytocinergic systems of the brainstem and the hypothalamus. Whether these pathways are activated directly by OEA or whether they are downstream of afferent nerves is still highly debated. Some early studies suggested vagal afferent fibers as the main route, but our previous observations have contradicted this idea and led us to consider the blood circulation as an alternative way for OEA's central actions. Methods: To test this hypothesis, we first investigated the impact of subdiaphragmatic vagal deafferentation (SDA) on the OEA-induced activation of selected brain nuclei. Then, we analyzed the pattern of OEA distribution in plasma and brain at different time points after intraperitoneal administration in addition to measuring food intake. Results: Confirming and extending our previous findings that subdiaphragmatic vagal afferents are not necessary for the eating-inhibitory effect of exogenous OEA, our present results demonstrate that vagal sensory fibers are also not necessary for the neurochemical effects of OEA. Rather, within a few minutes after intraperitoneal administration, we found an increased concentration of intact OEA in different brain areas, associated with the inhibition of food intake. Conclusion: Our results support that systemic OEA rapidly reaches the brain via the circulation and inhibits eating by acting directly on selected brain nuclei.


Assuntos
Encéfalo , Ingestão de Alimentos , Ingestão de Alimentos/fisiologia , Encéfalo/metabolismo , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Ácidos Oleicos/farmacologia , Ácidos Oleicos/metabolismo
2.
Antioxidants (Basel) ; 10(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34439537

RESUMO

Long-term high-fat diet (HFD) consumption can cause weight gain and obesity, two conditions often associated with hepatic non-alcoholic fatty liver and oxidative stress. Oleoylethanolamide (OEA), a lipid compound produced by the intestine from oleic acid, has been associated with different beneficial effects in diet-induced obesity and hepatic steatosis. However, the role of OEA on hepatic oxidative stress has not been fully elucidated. In this study, we used a model of diet-induced obesity to study the possible antioxidant effect of OEA in the liver. In this model rats with free access to an HFD for 77 days developed obesity, steatosis, and hepatic oxidative stress, as compared to rats consuming a low-fat diet for the same period. Several parameters associated with oxidative stress were then measured after two weeks of OEA administration to diet-induced obese rats. We showed that OEA reduced, compared to HFD-fed rats, obesity, steatosis, and the plasma level of triacylglycerols and transaminases. Moreover, OEA decreased the amount of malondialdehyde and carbonylated proteins and restored the activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, which decreased in the liver of HFD-fed rats. OEA had also an improving effect on parameters linked to endoplasmic reticulum stress, thus demonstrating a role in the homeostatic control of protein folding. Finally, we reported that OEA differently regulated the expression of two transcription factors involved in the control of lipid metabolism and antioxidant genes, namely nuclear factor erythroid-derived 2-related factor 1 (Nrf1) and Nrf2, thus suggesting, for the first time, new targets of the protective effect of OEA in the liver.

3.
Neurobiol Stress ; 14: 100317, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33869681

RESUMO

The physiological mechanisms underlying the complex interplay between life stressors and metabolic factors is receiving growing interest and is being analyzed as one of the many factors contributing to depressive illness. The brain histaminergic system modulates neuronal activity extensively and we demonstrated that its integrity is necessary for peripheral signals such as the bioactive lipid mediator oleoylethanolamide (OEA) to exert its central actions. Here, we investigated the role of brain histamine and its interaction with OEA in response to chronic social defeat stress (CSDS), a preclinical protocol widely used to study physio-pathological mechanisms underlying symptoms observed in depression. Both histidine decarboxylase null (HDC-/-) and HDC+/+ mice were subjected to CSDS for 21 days and treated with either OEA or vehicle daily, starting 10 days after CSDS initiation, until sacrifice. Undisturbed mice served as controls. To test the hypothesis of a histamine-OEA interplay on behavioral responses affected by chronic stress, tests encompassing the social, ethological and memory domains were used. CSDS caused cognitive and social behavior impairments in both genotypes, however, only stressed HDC+/+ mice responded to the beneficial effects of OEA. To detect subtle behavioral features, an advanced multivariate approach known as T-pattern analysis was used. It revealed unexpected differences of the organization of behavioral sequences during mice social interaction between the two genotypes. These data confirm the centrality of the neurotransmitter histamine as a modulator of complex behavioral responses and directly implicate OEA as a protective agent against social stress consequences in a histamine dependent fashion.

4.
Nutrients ; 13(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513874

RESUMO

Oleoylethanolamide (OEA) is a naturally occurring bioactive lipid belonging to the family of N-acylethanolamides. A variety of beneficial effects have been attributed to OEA, although the greater interest is due to its potential role in the treatment of obesity, fatty liver, and eating-related disorders. To better clarify the mechanism of the antiadipogenic effect of OEA in the liver, using a lipidomic study performed by 1H-NMR, LC-MS/MS and thin-layer chromatography analyses we evaluated the whole lipid composition of rat liver, following a two-week daily treatment of OEA (10 mg kg-1 i.p.). We found that OEA induced a significant reduction in hepatic triacylglycerol (TAG) content and significant changes in sphingolipid composition and ceramidase activity. We associated the antiadipogenic effect of OEA to decreased activity and expression of key enzymes involved in fatty acid and TAG syntheses, such as acetyl-CoA carboxylase, fatty acid synthase, diacylglycerol acyltransferase, and stearoyl-CoA desaturase 1. Moreover, we found that both SREBP-1 and PPARγ protein expression were significantly reduced in the liver of OEA-treated rats. Our findings add significant and important insights into the molecular mechanism of OEA on hepatic adipogenesis, and suggest a possible link between the OEA-induced changes in sphingolipid metabolism and suppression of hepatic TAG level.


Assuntos
Endocanabinoides/uso terapêutico , Ácidos Graxos/metabolismo , Fígado/metabolismo , Ácidos Oleicos/uso terapêutico , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo , Animais , Linhagem Celular Tumoral , Cromatografia Líquida , Diacilglicerol O-Aciltransferase/metabolismo , Lipogênese , Espectroscopia de Ressonância Magnética , Masculino , Análise Multivariada , Ratos , Ratos Wistar , Estearoil-CoA Dessaturase/metabolismo , Espectrometria de Massas em Tandem
5.
Neuropsychopharmacology ; 45(11): 1931-1941, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32353860

RESUMO

Binge eating disorder (BED) is the most frequent eating disorder, for which current pharmacotherapies show poor response rates and safety concerns, thus highlighting the need for novel treatment options. The lipid-derived messenger oleoylethanolamide (OEA) acts as a satiety signal inhibiting food intake through the involvement of central noradrenergic and oxytocinergic neurons. We investigated the anti-binge effects of OEA in a rat model of binge-like eating, in which, after cycles of intermittent food restrictions/refeeding and palatable food consumptions, female rats show a binge-like intake of palatable food, following a 15-min exposure to their sight and smell ("frustration stress"). Systemically administered OEA dose-dependently (2.5, 5, and 10 mg kg-1) prevented binge-like eating. This behavioral effect was associated with a decreased activation (measured by mapping the expression of c-fos, an early gene widely used as a marker of cellular activation) of brain areas responding to stress (such as the nucleus accumbens and amygdala) and to a stimulation of areas involved in the control of food intake, such as the VTA and the PVN. These effects were paralleled, also, to the modulation of monoamine transmission in key brain areas involved in both homeostatic and hedonic control of eating. In particular, a decreased dopaminergic response to stress was observed by measuring dopamine extracellular concentrations in microdialysates from the nucleus accumbens shell, whereas an increased serotonergic and noradrenergic tone was detected in tissue homogenates of selected brain areas. Finally, a decrease in corticotropin-releasing factor (CRF) mRNA levels was induced by OEA in the central amygdala, while an increase in oxytocin mRNA levels was induced in the PVN. The restoration of a normal oxytocin receptor density in the striatum paralleled the oxytocinergic stimulation produced by OEA. In conclusion, we provide evidence suggesting that OEA might represent a novel potential pharmacological target for the treatment of binge-like eating behavior.


Assuntos
Transtorno da Compulsão Alimentar , Animais , Transtorno da Compulsão Alimentar/tratamento farmacológico , Ingestão de Alimentos , Endocanabinoides , Feminino , Frustração , Ácidos Oleicos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA