Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(31): eadn4682, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39083600

RESUMO

G0-G1 phase alternative end joining (A-EJ) is a recently defined mutagenic pathway characterized by resected deletion and translocation joints that are predominantly direct and are distinguished from A-EJ in cycling cells that rely much more on microhomology-mediated end joining (MMEJ). Using chemical and genetic approaches, we systematically evaluate potential A-EJ factors and DNA damage response (DDR) genes to support this mechanism by mapping the repair fates of RAG1/2-initiated double-strand breaks in the context of Igκ locus V-J recombination and chromosome translocation. Our findings highlight a polymerase theta-independent Parp1-XRCC1/LigIII axis as central A-EJ components, supported by 53BP1 in the context of an Ataxia-telangiectasia mutated (ATM)-activated DDR. Mechanistically, we demonstrate varied changes in short-range resection, MMEJ, and translocation, imposed by compromising specific DDR activities, which include polymerase alpha, Ataxia-telangiectasia and Rad3-related (ATR), DNA2, and Mre11. This study advances our understanding of DNA damage repair within the 53BP1 regulatory domain and the RAG1/2 postcleavage complex.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA por Junção de Extremidades , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Recombinação V(D)J , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Animais , Humanos , Quebras de DNA de Cadeia Dupla , Camundongos , Dano ao DNA , Translocação Genética
2.
Genes Dev ; 38(11-12): 569-582, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38997156

RESUMO

Salivary gland homeostasis and regeneration after radiotherapy depend significantly on progenitor cells. However, the lineage of submandibular gland (SMG) progenitor cells remains less defined compared with other normal organs. Here, using a mouse strain expressing regulated CreERT2 recombinase from the endogenous Tert locus, we identify a distinct telomerase-expressing (TertHigh) cell population located in the ductal region of the adult SMG. These TertHigh cells contribute to ductal cell generation during SMG homeostasis and to both ductal and acinar cell renewal 1 year after radiotherapy. TertHigh cells maintain self-renewal capacity during in vitro culture, exhibit resistance to radiation damage, and demonstrate enhanced proliferative activity after radiation exposure. Similarly, primary human SMG cells with high Tert expression display enhanced cell survival after radiotherapy, and CRISPR-activated Tert in human SMG spheres increases proliferation after radiation. RNA sequencing reveals upregulation of "cell cycling" and "oxidative stress response" pathways in TertHigh cells following radiation. Mechanistically, Tert appears to modulate cell survival through ROS levels in SMG spheres following radiation damage. Our findings highlight the significance of TertHigh cells in salivary gland biology, providing insights into their response to radiotherapy and into their use as a potential target for enhancing salivary gland regeneration after radiotherapy.


Assuntos
Homeostase , Regeneração , Telomerase , Telomerase/metabolismo , Telomerase/genética , Animais , Homeostase/genética , Homeostase/efeitos da radiação , Camundongos , Regeneração/efeitos da radiação , Regeneração/genética , Humanos , Glândulas Salivares/efeitos da radiação , Glândulas Salivares/metabolismo , Glândulas Salivares/citologia , Proliferação de Células/efeitos da radiação , Proliferação de Células/genética , Sobrevivência Celular/efeitos da radiação , Sobrevivência Celular/genética , Glândula Submandibular/efeitos da radiação , Glândula Submandibular/metabolismo , Células-Tronco/efeitos da radiação , Células-Tronco/metabolismo , Células-Tronco/citologia , Radioterapia/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas
3.
Nat Commun ; 15(1): 6331, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068148

RESUMO

Activation-induced cytidine deaminase (AID) is a B cell-specific mutator required for antibody diversification. However, it is also implicated in the etiology of several B cell malignancies. Evaluating the AID-induced mutation load in patients at-risk for certain blood cancers is critical in assessing disease severity and treatment options. We have developed a digital PCR (dPCR) assay that allows us to quantify mutations resulting from AID modification or DNA double-strand break (DSB) formation and repair at sites known to be prone to DSBs. Implementation of this assay shows that increased AID levels in immature B cells increase genome instability at loci linked to chromosomal translocation formation. This includes the CRLF2 locus that is often involved in translocations associated with a subtype of acute lymphoblastic leukemia (ALL) that disproportionately affects Hispanics, particularly those with Latin American ancestry. Using dPCR, we characterize the CRLF2 locus in B cell-derived genomic DNA from both Hispanic ALL patients and healthy Hispanic donors and found increased mutations in both, suggesting that vulnerability to DNA damage at CRLF2 may be driving this health disparity. Our ability to detect and quantify these mutations will potentiate future risk identification, early detection of cancers, and reduction of associated cancer health disparities.


Assuntos
Citidina Desaminase , Hispânico ou Latino , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Citocinas , Humanos , Citidina Desaminase/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Hispânico ou Latino/genética , Receptores de Citocinas/genética , Quebras de DNA de Cadeia Dupla , Linfócitos B/metabolismo , Linfócitos B/imunologia , Disparidades nos Níveis de Saúde , Translocação Genética , Loci Gênicos , América Latina , Feminino
4.
Res Sq ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37790327

RESUMO

Activation-induced cytidine deaminase (AID) is a B cell-specific base editor required during class switch recombination and somatic hypermutation for B cell maturation and antibody diversification. However, it has also been implicated as a factor in the etiology of several B cell malignancies. Evaluating the AID-induced mutation load in patients at-risk for certain types of blood cancers is critical in assessing disease severity and treatment options. Here, we have developed a digital PCR (dPCR) assay that allows us to track the mutational landscape resulting from AID modification or DNA double-strand break (DSB) formation and repair at sites known to be prone to DSBs. Implementation of this new assay showed that increased AID levels in immature B cells increases genome instability at loci linked to translocation formation. This included the CRLF2 locus that is often involved in chromosomal translocations associated with a subtype of acute lymphoblastic leukemia (ALL) that disproportionately affects Latin Americans (LAs). To support this LA-specific identification of AID mutation signatures, we characterized DNA from immature B cells isolated from the bone marrow of ALL patients. Our ability to detect and quantify these mutation signatures will potentiate future risk identification, early detection of cancers, and reduction of associated cancer health disparities.

5.
Radiother Oncol ; 188: 109906, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690668

RESUMO

BACKGROUND AND PURPOSE: The impact of radiotherapy (RT) at ultra high vs conventional dose rate (FLASH vs CONV) on the generation and repair of DNA double strand breaks (DSBs) is an important question that remains to be investigated. Here, we tested the hypothesis as to whether FLASH-RT generates decreased chromosomal translocations compared to CONV-RT. MATERIALS AND METHODS: We used two FLASH validated electron beams and high-throughput rejoin and genome-wide translocation sequencing (HTGTS-JoinT-seq), employing S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs) in HEK239T cells, to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated after various irradiation doses, dose rates and oxygen tensions (normoxic, 21% O2; physiological, 4% O2; hypoxic, 2% and 0.5% O2). Electron irradiation was delivered using a FLASH capable Varian Trilogy and the eRT6/Oriatron at CONV (0.08-0.13 Gy/s) and FLASH (1x102-5x106 Gy/s) dose rates. Related experiments using clonogenic survival and γH2AX foci in the 293T and the U87 glioblastoma lines were also performed to discern FLASH-RT vs CONV-RT DSB effects. RESULTS: Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Furthermore, RT dose rate modality on U87 cells did not change γH2AX foci numbers at 1- and 24-hours post-irradiation nor did this affect 293T clonogenic survival. CONCLUSION: Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.

6.
bioRxiv ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37034651

RESUMO

The molecular and cellular mechanisms driving the enhanced therapeutic ratio of ultra-high dose-rate radiotherapy (FLASH-RT) over slower conventional (CONV-RT) radiotherapy dose-rate remain to be elucidated. However, attenuated DNA damage and transient oxygen depletion are among several proposed models. Here, we tested whether FLASH-RT under physioxic (4% O 2 ) and hypoxic conditions (≤2% O 2 ) reduces genome-wide translocations relative to CONV-RT and whether any differences identified revert under normoxic (21% O 2 ) conditions. We employed high-throughput rejoin and genome-wide translocation sequencing ( HTGTS-JoinT-seq ), using S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs), to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated by electron beam CONV-RT (0.08-0.13Gy/s) and FLASH-RT (1×10 2 -5×10 6 Gy/s), under varying ionizing radiation (IR) doses and oxygen tensions. Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Thus, Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.

7.
Sci Transl Med ; 13(598)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135108

RESUMO

Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the ß-globin gene (HBB). Ex vivo ß-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD.


Assuntos
Anemia Falciforme , Compostos Heterocíclicos , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Camundongos , Reprodutibilidade dos Testes , Globinas beta/genética
8.
Proc Natl Acad Sci U S A ; 115(40): 10076-10081, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30213852

RESUMO

Chromosomal rearrangements, including translocations, are early and essential events in the formation of many tumors. Previous studies that defined the genetic requirements for rearrangement formation have identified differences between murine and human cells, most notably in the role of classic and alternative nonhomologous end-joining (NHEJ) factors. We reported that poly(ADP)ribose polymerase 3 (PARP3) promotes chromosomal rearrangements induced by endonucleases in multiple human cell types. We show here that in contrast to classic (c-NHEJ) factors, Parp3 also promotes rearrangements in murine cells, including translocations in murine embryonic stem cells (mESCs), class-switch recombination in primary B cells, and inversions in tail fibroblasts that generate Eml4-Alk fusions. In mESCs, Parp3-deficient cells had shorter deletion lengths at translocation junctions. This was corroborated using next-generation sequencing of Eml4-Alk junctions in tail fibroblasts and is consistent with a role for Parp3 in promoting the processing of DNA double-strand breaks. We confirmed a previous report that Parp1 also promotes rearrangement formation. In contrast with Parp3, rearrangement junctions in the absence of Parp1 had longer deletion lengths, suggesting that Parp1 may suppress double-strand break processing. Together, these data indicate that Parp3 and Parp1 promote rearrangements with distinct phenotypes.


Assuntos
Linfócitos B/metabolismo , Reparo do DNA por Junção de Extremidades/fisiologia , Switching de Imunoglobulina/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Quinase do Linfoma Anaplásico , Animais , Fibroblastos/metabolismo , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
9.
Nature ; 551(7682): 590-595, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29168504

RESUMO

Small, approximately 10-kilobase microhomology-mediated tandem duplications are abundant in the genomes of BRCA1-linked but not BRCA2-linked breast cancer. Here we define the mechanism underlying this rearrangement signature. We show that, in primary mammalian cells, BRCA1, but not BRCA2, suppresses the formation of tandem duplications at a site-specific chromosomal replication fork barrier imposed by the binding of Tus proteins to an array of Ter sites. BRCA1 has no equivalent role at chromosomal double-stranded DNA breaks, indicating that tandem duplications form specifically at stalled forks. Tandem duplications in BRCA1 mutant cells arise by a replication restart-bypass mechanism terminated by end joining or by microhomology-mediated template switching, the latter forming complex tandem duplication breakpoints. Solitary DNA ends form directly at Tus-Ter, implicating misrepair of these lesions in tandem duplication formation. Furthermore, BRCA1 inactivation is strongly associated with ~10 kilobase tandem duplications in ovarian cancer. This tandem duplicator phenotype may be a general signature of BRCA1-deficient cancer.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Replicação do DNA/genética , Sequências de Repetição em Tandem/genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Animais , Proteína BRCA1 , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Células-Tronco Embrionárias , Feminino , Genes Reporter , Recombinação Homóloga , Humanos , Camundongos , Neoplasias Ovarianas/genética , Deleção de Sequência , Proteínas Supressoras de Tumor/metabolismo
10.
Nat Biomed Eng ; 1(11): 878-888, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-31015609

RESUMO

Gene disruption by clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) is highly efficient and relies on the error-prone non-homologous end-joining pathway. Conversely, precise gene editing requires homology-directed repair (HDR), which occurs at a lower frequency than non-homologous end-joining in mammalian cells. Here, by testing whether manipulation of DNA repair factors improves HDR efficacy, we show that transient ectopic co-expression of RAD52 and a dominant-negative form of tumour protein p53-binding protein 1 (dn53BP1) synergize to enable efficient HDR using a single-stranded oligonucleotide DNA donor template at multiple loci in human cells, including patient-derived induced pluripotent stem cells. Co-expression of RAD52 and dn53BP1 improves multiplexed HDR-mediated editing, whereas expression of RAD52 alone enhances HDR with Cas9 nickase. Our data show that the frequency of non-homologous end-joining-mediated double-strand break repair in the presence of these two factors is not suppressed and suggest that dn53BP1 competitively antagonizes 53BP1 to augment HDR in combination with RAD52. Importantly, co-expression of RAD52 and dn53BP1 does not alter Cas9 off-target activity. These findings support the use of RAD52 and dn53BP1 co-expression to overcome bottlenecks that limit HDR in precision genome editing.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA , Edição de Genes/métodos , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Expressão Ectópica do Gene , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Reparo de DNA por Recombinação
11.
J Exp Med ; 213(9): 1921-36, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27526713

RESUMO

T cell antigen receptor δ (Tcrd) variable region exons are assembled by RAG-initiated V(D)J recombination events in developing γδ thymocytes. Here, we use linear amplification-mediated high-throughput genome-wide translocation sequencing (LAM-HTGTS) to map hundreds of thousands of RAG-initiated Tcrd D segment (Trdd1 and Trdd2) rearrangements in CD4(-)CD8(-) double-negative thymocyte progenitors differentiated in vitro from bone marrow-derived hematopoietic stem cells. We find that Trdd2 joins directly to Trdv, Trdd1, and Trdj segments, whereas Trdd1 joining is ordered with joining to Trdd2, a prerequisite for further rearrangement. We also find frequent, previously unappreciated, Trdd1 and Trdd2 rearrangements that inactivate Tcrd, including sequential rearrangements from V(D)J recombination signal sequence fusions. Moreover, we find dozens of RAG off-target sequences that are generated via RAG tracking both upstream and downstream from the Trdd2 recombination center across the Tcrd loop domain that is bounded by the upstream INT1-2 and downstream TEA elements. Disruption of the upstream INT1-2 boundary of this loop domain allows spreading of RAG on- and off-target activity to the proximal Trdv domain and, correspondingly, shifts the Tcrd V(D)J recombination landscape by leading to predominant V(D)J joining to a proximal Trdv3 pseudogene that lies just upstream of the normal boundary.


Assuntos
Proteínas de Homeodomínio/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Linfócitos T/fisiologia , Recombinação V(D)J , Sistemas de Transporte de Aminoácidos Básicos/genética , Animais , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Camundongos
12.
Cell ; 163(4): 947-59, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26593423

RESUMO

RAG initiates antibody V(D)J recombination in developing lymphocytes by generating "on-target" DNA breaks at matched pairs of bona fide recombination signal sequences (RSSs). We employ bait RAG-generated breaks in endogenous or ectopically inserted RSS pairs to identify huge numbers of RAG "off-target" breaks. Such breaks occur at the simple CAC motif that defines the RSS cleavage site and are largely confined within convergent CTCF-binding element (CBE)-flanked loop domains containing bait RSS pairs. Marked orientation dependence of RAG off-target activity within loops spanning up to 2 megabases implies involvement of linear tracking. In this regard, major RAG off-targets in chromosomal translocations occur as convergent RSS pairs at enhancers within a loop. Finally, deletion of a CBE-based IgH locus element disrupts V(D)J recombination domains and, correspondingly, alters RAG on- and off-target distributions within IgH. Our findings reveal how RAG activity is developmentally focused and implicate mechanisms by which chromatin domains harness biological processes within them.


Assuntos
Cromossomos de Mamíferos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Recombinação V(D)J , Animais , Fator de Ligação a CCCTC , Cromossomos de Mamíferos/química , Proteínas de Ligação a DNA/metabolismo , Genes myc , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/metabolismo , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Linfoma/genética , Camundongos , Motivos de Nucleotídeos , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA , Translocação Genética
13.
Cell ; 147(1): 107-19, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21962511

RESUMO

Whereas chromosomal translocations are common pathogenetic events in cancer, mechanisms that promote them are poorly understood. To elucidate translocation mechanisms in mammalian cells, we developed high-throughput, genome-wide translocation sequencing (HTGTS). We employed HTGTS to identify tens of thousands of independent translocation junctions involving fixed I-SceI meganuclease-generated DNA double-strand breaks (DSBs) within the c-myc oncogene or IgH locus of B lymphocytes induced for activation-induced cytidine deaminase (AID)-dependent IgH class switching. DSBs translocated widely across the genome but were preferentially targeted to transcribed chromosomal regions. Additionally, numerous AID-dependent and AID-independent hot spots were targeted, with the latter comprising mainly cryptic I-SceI targets. Comparison of translocation junctions with genome-wide nuclear run-ons revealed a marked association between transcription start sites and translocation targeting. The majority of translocation junctions were formed via end-joining with short microhomologies. Our findings have implications for diverse fields, including gene therapy and cancer genomics.


Assuntos
Linfócitos B/metabolismo , Quebra Cromossômica , Genoma , Mutagênese , Translocação Genética , Animais , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Genes myc , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos , Neoplasias/genética , Baço/citologia
14.
Proc Natl Acad Sci U S A ; 101(26): 9677-82, 2004 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-15210943

RESUMO

The retinoblastoma protein (pRB) is a critical regulator of cell proliferation and differentiation and an important tumor suppressor. In the G(1) phase of the cell cycle, pRB localizes to perinucleolar sites associated with lamin A/C intranuclear foci. Here, we examine pRB function in cells lacking lamin A/C, finding that pRB levels are dramatically decreased and that the remaining pRB is mislocalized. We demonstrate that A-type lamins protect pRB from proteasomal degradation. Both pRB levels and localization are restored upon reintroduction of lamin A. Lmna(-/-) cells resemble Rb(-/-) cells, exhibiting altered cell-cycle properties and reduced capacity to undergo cell-cycle arrest in response to DNA damage. These findings establish a functional link between a core nuclear structural component and an important cell-cycle regulator. They further raise the possibility that altered pRB function may be a contributing factor in dystrophic syndromes arising from LMNA mutation.


Assuntos
Núcleo Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Lamina Tipo A/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Proteína do Retinoblastoma/metabolismo , Células 3T3 , Transporte Ativo do Núcleo Celular , Animais , Ciclo Celular , Fibroblastos , Deleção de Genes , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Camundongos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fenótipo , Complexo de Endopeptidases do Proteassoma , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like
15.
Development ; 130(1): 173-84, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12441301

RESUMO

The transmembrane protein Dystroglycan is a central element of the dystrophin-associated glycoprotein complex, which is involved in the pathogenesis of many forms of muscular dystrophy. Dystroglycan is a receptor for multiple extracellular matrix (ECM) molecules such as Laminin, agrin and perlecan, and plays a role in linking the ECM to the actin cytoskeleton; however, how these interactions are regulated and their basic cellular functions are poorly understood. Using mosaic analysis and RNAi in the model organism Drosophila melanogaster, we show that Dystroglycan is required cell-autonomously for cellular polarity in two different cell types, the epithelial cells (apicobasal polarity) and the oocyte (anteroposterior polarity). Loss of Dystroglycan function in follicle and disc epithelia results in expansion of apical markers to the basal side of cells and overexpression results in a reduced apical localization of these same markers. In Dystroglycan germline clones early oocyte polarity markers fail to be localized to the posterior, and oocyte cortical F-actin organization is abnormal. Dystroglycan is also required non-cell-autonomously to organize the planar polarity of basal actin in follicle cells, possibly by organizing the Laminin ECM. These data suggest that the primary function of Dystroglycan in oogenesis is to organize cellular polarity; and this study sets the stage for analyzing the Dystroglycan complex by using the power of Drosophila molecular genetics.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Células Epiteliais/citologia , Glicoproteínas de Membrana/metabolismo , Oócitos/citologia , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Polaridade Celular/fisiologia , Proteínas do Citoesqueleto/genética , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Proteínas de Drosophila/genética , Distroglicanas , Células Epiteliais/fisiologia , Feminino , Laminina/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Oócitos/fisiologia , Folículo Ovariano/citologia , Folículo Ovariano/fisiologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA