Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Analyst ; 146(21): 6566-6575, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34585690

RESUMO

The PI3-kinase/AKT/mTOR pathway plays a central role in cancer signaling. While p110α is the catalytic α-subunit of PI3-kinase and a major drug target, PTEN is the main negative regulator of the PI3-kinase/AKT/mTOR pathway. PTEN is often down-regulated in cancer, and there are conflicting data on PTEN's role as breast cancer biomarker. PTEN and p110α protein expression in tumors is commonly analyzed by immunohistochemistry, which suffers from poor multiplexing capacity, poor standardization, and antibody crossreactivity, and which provides only semi-quantitative data. Here, we present an automated, and standardized immuno-matrix-assisted laser desorption/ionization mass spectrometry (iMALDI) assay that allows precise and multiplexed quantitation of PTEN and p110α concentrations, without the limitations of immunohistochemistry. Our iMALDI assay only requires a low-cost benchtop MALDI-TOF mass spectrometer, which simplifies clinical translation. We validated our assay's precision and accuracy, with simultaneous enrichment of both target proteins not significantly affecting the precision and accuracy of the quantitation when compared to the PTEN- and p110α-singleplex iMALDI assays (<15% difference). The multiplexed assay's linear range is from 0.6-20 fmol with accuracies of 90-112% for both target proteins, and the assay is free of matrix-related interferences. The inter-day reproducibility over 5-days was high, with an overall CV of 9%. PTEN and p110α protein concentrations can be quantified down to 1.4 fmol and 0.6 fmol per 10 µg of total tumor protein, respectively, in various tumor tissue samples, including fresh-frozen breast tumors and colorectal cancer liver metastases, and patient-derived xenograft (PDX) tumors.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Linhagem Celular Tumoral , Feminino , Humanos , Lasers , Proteínas de Neoplasias , PTEN Fosfo-Hidrolase , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Anal Chem ; 92(18): 12407-12414, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786432

RESUMO

Mass spectrometry (MS), particularly targeted proteomics, is increasingly being used for quantifying specific proteins and peptides in clinical specimens. The coupling of immuno-enrichment of proteotypic peptides with MS [e.g., immuno-multiple reaction monitoring (MRM) and immuno-matrix-assisted laser desorption ionization (MALDI)] enables the development of highly sensitive and specific assays for low-abundance signaling proteins. By incorporating stable isotope-labeled standards, these workflows allow the determination of endogenous protein concentrations. This is typically achieved through external calibration, often using surrogate matrices, which has inherent limitations for the analysis of clinical specimens as there are often substantial variations in the sample matrix, and sample amounts are typically limited. We have previously introduced the use of two peptide isotopologues for generating external calibration curves in plasma. Here, we present a two-point internal calibration (2-PIC) strategy using two isotopologues for immuno-MS assays and demonstrate its flexibility and robustness. Quantification of the tumor suppressor PTEN in Colo-205 cells by immuno-MRM and immuno-MALDI using 2-PIC and external calibration yielded very similar results (relative standard deviation between 2-PIC and external calibration: 4.9% for immuno-MRM; 1.1% for immuno-MALDI), without the need for a surrogate matrix or additional patient material for calibration, while concurrently reducing the instrument time and cost. Although our PTEN immuno-MRM and immuno-MALDI assays can be considered to be orthogonal as they utilized entirely different sample preparation and MS analysis workflows, targeted different PTEN peptides, and were performed in different laboratories, the endogenous Colo-205 PTEN levels determined with 2-PIC showed a good correlation (r2 = 0.9966) and good agreement (0.48 ± 0.01 and 0.29 ± 0.02 fmol/µg of total protein) between immuno-MRM and immuno-MALDI.


Assuntos
Neoplasias do Colo/diagnóstico , Ensaio de Imunoadsorção Enzimática , Peptídeos/química , Proteínas/análise , Calibragem , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática/normas , Humanos , Marcação por Isótopo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas
3.
Proteomics Clin Appl ; 14(5): e2000034, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32643306

RESUMO

PURPOSE: Immuno-MALDI (iMALDI) combines immuno-enrichment of biomarkers with MALDI-MS for fast, precise, and specific quantitation, making it a valuable tool for developing clinical assays. iMALDI assays are optimized for the PI3-kinase signaling pathway members phosphatase and tensin homolog (PTEN) and PI3-kinase catalytic subunit alpha (p110α), with regard to sensitivity, robustness, and throughput. A standardized template for developing future iMALDI assays, including automation protocols to streamline assay development and translation, is provided. EXPERIMENTAL DESIGN: Conditions for tryptic digestion and immuno-enrichment (beads, bead:antibody ratios, incubation times, direct vs. indirect immuno-enrichment) are rigorously tested. Different strategies for calibration and data readout are compared. RESULTS: Digestion using 1:2 protein:trypsin (wt:wt) for 1 h yielded high and consistent peptide recoveries. Direct immuno-enrichment (antibody-bead coupling prior to antigen-enrichment) yielded 30% higher peptide recovery with a 1 h shorter incubation time than indirect enrichment. Immuno-enrichment incubation overnight yielded 1.5-fold higher sensitivities than 1 h incubation. Quantitation of the endogenous target proteins is not affected by the complexity of the calibration matrix, further simplifying the workflow. CONCLUSIONS AND CLINICAL RELEVANCE: This optimized and automated workflow will facilitate the clinical translation of high-throughput sensitive iMALDI assays for quantifying cell-signaling proteins in individual tumor samples, thereby improving patient stratification for targeted treatment.


Assuntos
Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fluxo de Trabalho , Linhagem Celular Tumoral , Humanos , Limite de Detecção , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA