Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 223: 281-295, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067625

RESUMO

Classical homocystinuria is a rare disease caused by mutations in cystathionine ß-synthase (CBS) gene (OMIM 613381). CBS catalyzes the first step of the transsulfuration pathway that converts homocysteine (Hcy) into cystathionine (Cysta) via a number of co-substrates and mechanisms. Formation of Cysta by condensation of Hcy and cysteine (Cys) produces a molar equivalent of hydrogen sulfide (H2S). H2S plays important roles in cognitive and vascular functions. Clinically, patients with CBS deficiency present with vascular, ocular, neurological and skeletal impairments. Biochemically, CBS deficiency manifests with elevated Hcy and reduced concentration of Cysta in plasma and urine. A number of pathogenic variants of human CBS have been characterized by their residual enzymatic activity, but very few studies have examined H2S production by pathogenic CBS variants, possibly due to technical hurdles in H2S detection and quantification. We describe a method for the real-time, continuous quantification of H2S formed by wild-type and pathogenic variants of human recombinant CBS, as well as by fibroblast extracts from healthy controls and patients diagnosed with CBS deficiency. The method takes advantage of the specificity and high affinity of hemoglobin I of the clam Lucina pectinata toward H2S and is based on UV-visible spectrophotometry. Comparison with the gold-standard, end-point H2S quantification method employing monobromobimane, as well as correlations with CBS enzymatic activity determined by LC-MS/MS showed agreement and correlation, and permitted the direct, time-resolved determination of H2S production rates by purified human recombinant CBS and by CBS present in fibroblast extracts. Rates of H2S production were highest for wild-type CBS, and lower for pathogenic variants. This method enables the examination of structural determinants of CBS that are important for H2S production and its possible relevance to the clinical outcome of patients.

2.
Nat Commun ; 15(1): 3248, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622112

RESUMO

5,10-methylenetetrahydrofolate reductase (MTHFR) commits folate-derived one-carbon units to generate the methyl-donor S-adenosyl-L-methionine (SAM). Eukaryotic MTHFR appends to the well-conserved catalytic domain (CD) a unique regulatory domain (RD) that confers feedback inhibition by SAM. Here we determine the cryo-electron microscopy structures of human MTHFR bound to SAM and its demethylated product S-adenosyl-L-homocysteine (SAH). In the active state, with the RD bound to a single SAH, the CD is flexible and exposes its active site for catalysis. However, in the inhibited state the RD pocket is remodelled, exposing a second SAM-binding site that was previously occluded. Dual-SAM bound MTHFR demonstrates a substantially rearranged inter-domain linker that reorients the CD, inserts a loop into the active site, positions Tyr404 to bind the cofactor FAD, and blocks substrate access. Our data therefore explain the long-distance regulatory mechanism of MTHFR inhibition, underpinned by the transition between dual-SAM and single-SAH binding in response to cellular methylation status.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , S-Adenosilmetionina , Humanos , Regulação Alostérica , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Microscopia Crioeletrônica , S-Adenosilmetionina/metabolismo , Metilação
3.
Clin Epigenetics ; 14(1): 52, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440018

RESUMO

BACKGROUND: epi-cblC is a recently discovered inherited disorder of intracellular vitamin B12 metabolism associating hematological, neurological, and cardiometabolic outcomes. It is produced by an epimutation at the promoter common to CCDC163P and MMACHC, which results from an aberrant antisense transcription due to splicing mutations in the antisense PRDX1 gene neighboring MMACHC. We studied whether the aberrant transcription produced a second epimutation by encompassing the CpG island of the TESK2 gene neighboring CCDC163P. METHODS: We unraveled the methylome architecture of the CCDC163P-MMACHC CpG island (CpG:33) and the TESK2 CpG island (CpG:51) of 17 epi-cblC cases. We performed an integrative analysis of the DNA methylome profiling, transcriptome reconstruction of RNA-sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-Seq) of histone H3, and transcription expression of MMACHC and TESK2. RESULTS: The PRDX1 splice mutations and activation of numerous cryptic splice sites produced antisense readthrough transcripts encompassing the bidirectional MMACHC/CCDC163P promoter and the TESK2 promoter, resulting in the silencing of both the MMACHC and TESK2 genes through the deposition of SETD2-dependent H3K36me3 marks and the generation of epimutations in the CpG islands of the two promoters. CONCLUSIONS: The antisense readthrough transcription of the mutated PRDX1 produces an epigenetic silencing of MMACHC and TESK2. We propose using the term 'epi-digenism' to define this epigenetic disorder that affects two genes. Epi-cblC is an entity that differs from cblC. Indeed, the PRDX1 and TESK2 altered expressions are observed in epi-cblC but not in cblC, suggesting further evaluating the potential consequences on cancer risk and spermatogenesis.


Assuntos
Homocistinúria , Vitamina B 12 , Metilação de DNA , Homocistinúria/genética , Homocistinúria/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Serina-Treonina Quinases , Vitaminas
4.
Hum Genet ; 141(7): 1253-1267, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34796408

RESUMO

Pathogenic variants in MMAB cause cblB-type methylmalonic aciduria, an autosomal-recessive disorder of propionate metabolism. MMAB encodes ATP:cobalamin adenosyltransferase, using ATP and cob(I)alamin to create 5'-deoxyadenosylcobalamin (AdoCbl), the cofactor of methylmalonyl-CoA mutase (MMUT). We identified bi-allelic disease-causing variants in MMAB in 97 individuals with cblB-type methylmalonic aciduria, including 33 different and 16 novel variants. Missense changes accounted for the most frequent pathogenic alleles (p.(Arg186Trp), N = 57; p.(Arg191Trp), N = 19); while c.700C > T (p.(Arg234*)) was the most frequently identified truncating variant (N = 14). In fibroblasts from 76 affected individuals, the ratio of propionate incorporation in the presence and absence of hydroxocobalamin (PI ratio) was associated to clinical cobalamin responsiveness and later disease onset. We found p.(Arg234*) to be associated with cobalamin responsiveness in vitro, and clinically with later onset; p.(Arg186Trp) and p.(Arg191Trp) showed no clear cobalamin responsiveness and early onset. Mapping these and novel variants onto the MMAB structure revealed their potential to affect ATP and AdoCbl binding. Follow-up biochemical characterization of recombinant MMAB identified its three active sites to be equivalent for ATP binding, determined by fluorescence spectroscopy (Kd = 21 µM) and isothermal calorimetry (Kd = 14 µM), but function as two non-equivalent AdoCbl binding sites (Kd1 = 0.55 µM; Kd2 = 8.4 µM). Ejection of AdoCbl was activated by ATP (Ka = 24 µM), which was sensitized by the presence of MMUT (Ka = 13 µM). This study expands the landscape of pathogenic MMAB variants, provides association of in vitro and clinical responsiveness, and facilitates insight into MMAB function, enabling better disease understanding.


Assuntos
Alquil e Aril Transferases , Erros Inatos do Metabolismo dos Aminoácidos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Alquil e Aril Transferases/metabolismo , Alelos , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Humanos , Mutação , Propionatos , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Vitamina B 12/metabolismo
5.
Am J Hum Genet ; 108(7): 1283-1300, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214447

RESUMO

Most rare clinical missense variants cannot currently be classified as pathogenic or benign. Deficiency in human 5,10-methylenetetrahydrofolate reductase (MTHFR), the most common inherited disorder of folate metabolism, is caused primarily by rare missense variants. Further complicating variant interpretation, variant impacts often depend on environment. An important example of this phenomenon is the MTHFR variant p.Ala222Val (c.665C>T), which is carried by half of all humans and has a phenotypic impact that depends on dietary folate. Here we describe the results of 98,336 variant functional-impact assays, covering nearly all possible MTHFR amino acid substitutions in four folinate environments, each in the presence and absence of p.Ala222Val. The resulting atlas of MTHFR variant effects reveals many complex dependencies on both folinate and p.Ala222Val. MTHFR atlas scores can distinguish pathogenic from benign variants and, among individuals with severe MTHFR deficiency, correlate with age of disease onset. Providing a powerful tool for understanding structure-function relationships, the atlas suggests a role for a disordered loop in retaining cofactor at the active site and identifies variants that enable escape of inhibition by S-adenosylmethionine. Thus, a model based on eight MTHFR variant effect maps illustrates how shifting landscapes of environment- and genetic-background-dependent missense variation can inform our clinical, structural, and functional understanding of MTHFR deficiency.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Análise Mutacional de DNA , Diploide , Biblioteca Gênica , Genótipo , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/fisiologia , Saccharomyces cerevisiae/genética
6.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166201, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34147638

RESUMO

Combined methylmalonic aciduria with homocystinuria (cblC type) is a rare disease caused by mutations in the MMACHC gene. MMACHC encodes an enzyme crucial for intracellular vitamin B12 metabolism, leading to the accumulation of toxic metabolites e.g. methylmalonic acid (MMA) and homocysteine (Hcy), and secondary disturbances in folate and one-carbon metabolism when not fully functional. Patients with cblC deficiency often present in the neonatal or early childhood period with a severe multisystem pathology, which comprises a broad spectrum of treatment-resistant ophthalmological phenotypes, including retinal degeneration, impaired vision, and vascular changes. To examine the potential function of MMACHC in the retina and how its loss may impact disease, we performed gene expression studies in human and mouse, which showed that local expression of MMACHC in the retina and retinal pigment epithelium is relatively stable over time. To study whether functional MMACHC is required for retinal function and tissue integrity, we generated a transgenic mouse lacking Mmachc expression in cells of the peripheral retina. Characterization of this mouse revealed accumulation of cblC disease related metabolites, including MMA and the folate-dependent purine synthesis intermediates AICA-riboside and SAICA-riboside in the retina. Nevertheless, fundus appearance, morphology, vasculature, and cellular composition of the retina, as well as ocular function, remained normal in mice up to 6 or 12 months of age. Our data indicates that peripheral retinal neurons do not require intrinsic expression of Mmachc for survival and function and questions whether a local MMACHC deficiency is responsible for the retinal phenotypes in patients.


Assuntos
Oxirredutases/metabolismo , Retina/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Feminino , Homocisteína/metabolismo , Homocistinúria/metabolismo , Humanos , Masculino , Ácido Metilmalônico/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação/genética , Oxirredutases/genética , Fenótipo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Vitamina B 12/metabolismo , Adulto Jovem
7.
Biochimie ; 183: 100-107, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33476699

RESUMO

The folate and methionine cycles, constituting one-carbon metabolism, are critical pathways for cell survival. Intersecting these two cycles, 5,10-methylenetetrahydrofolate reductase (MTHFR) directs one-carbon units from the folate to methionine cycle, to be exclusively used for methionine and S-adenosylmethionine (AdoMet) synthesis. MTHFR deficiency and upregulation result in diverse disease states, rendering it an attractive drug target. The activity of MTHFR is inhibited by the binding of AdoMet to an allosteric regulatory domain distal to the enzyme's active site, which we have previously identified to constitute a novel fold with a druggable pocket. Here, we screened 162 AdoMet mimetics using differential scanning fluorimetry, and identified 4 compounds that stabilized this regulatory domain. Three compounds were sinefungin analogues, closely related to AdoMet and S-adenosylhomocysteine (AdoHcy). The strongest thermal stabilisation was provided by (S)-SKI-72, a potent inhibitor originally developed for protein arginine methyltransferase 4 (PRMT4). Using surface plasmon resonance, we confirmed that (S)-SKI-72 binds MTHFR via its allosteric domain with nanomolar affinity. Assay of MTHFR activity in the presence of (S)-SKI-72 demonstrates inhibition of purified enzyme with sub-micromolar potency and endogenous MTHFR from HEK293 cell lysate in the low micromolar range, both of which are lower than AdoMet. Nevertheless, unlike AdoMet, (S)-SKI-72 is unable to completely abolish MTHFR activity, even at very high concentrations. Combining binding assays, kinetic characterization and compound docking, this work indicates the regulatory domain of MTHFR can be targeted by small molecules and presents (S)-SKI-72 as an excellent candidate for development of MTHFR inhibitors.


Assuntos
Inibidores Enzimáticos/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/antagonistas & inibidores , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , S-Adenosilmetionina/química , Regulação Alostérica , Humanos , Domínios Proteicos
8.
J Inherit Metab Dis ; 42(2): 333-352, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30773687

RESUMO

AIM: To explore the clinical presentation, course, treatment and impact of early treatment in patients with remethylation disorders from the European Network and Registry for Homocystinurias and Methylation Defects (E-HOD) international web-based registry. RESULTS: This review comprises 238 patients (cobalamin C defect n = 161; methylenetetrahydrofolate reductase deficiency n = 50; cobalamin G defect n = 11; cobalamin E defect n = 10; cobalamin D defect n = 5; and cobalamin J defect n = 1) from 47 centres for whom the E-HOD registry includes, as a minimum, data on medical history and enrolment visit. The duration of observation was 127 patient years. In 181 clinically diagnosed patients, the median age at presentation was 30 days (range 1 day to 42 years) and the median age at diagnosis was 3.7 months (range 3 days to 56 years). Seventy-five percent of pre-clinically diagnosed patients with cobalamin C disease became symptomatic within the first 15 days of life. Total homocysteine (tHcy), amino acids and urinary methylmalonic acid (MMA) were the most frequently assessed disease markers; confirmatory diagnostics were mainly molecular genetic studies. Remethylation disorders are multisystem diseases dominated by neurological and eye disease and failure to thrive. In this cohort, mortality, thromboembolic, psychiatric and renal disease were rarer than reported elsewhere. Early treatment correlates with lower overall morbidity but is less effective in preventing eye disease and cognitive impairment. The wide variation in treatment hampers the evaluation of particular therapeutic modalities. CONCLUSION: Treatment improves the clinical course of remethylation disorders and reduces morbidity, especially if started early, but neurocognitive and eye symptoms are less responsive. Current treatment is highly variable. This study has the inevitable limitations of a retrospective, registry-based design.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Homocistinúria/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Espasticidade Muscular/metabolismo , Vitamina B 12/metabolismo , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Estudos Transversais , Progressão da Doença , Europa (Continente) , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Metilação , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Ácido Metilmalônico/urina , Fenótipo , Gravidez , Transtornos Psicóticos/metabolismo , Sistema de Registros , Estudos Retrospectivos , Adulto Jovem
9.
J Inherit Metab Dis ; 42(4): 673-685, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30693532

RESUMO

Vitamin B12 (cobalamin, Cbl) is a nutrient essential to human health. Due to its complex structure and dual cofactor forms, Cbl undergoes a complicated series of absorptive and processing steps before serving as cofactor for the enzymes methylmalonyl-CoA mutase and methionine synthase. Methylmalonyl-CoA mutase is required for the catabolism of certain (branched-chain) amino acids into an anaplerotic substrate in the mitochondrion, and dysfunction of the enzyme itself or in production of its cofactor adenosyl-Cbl result in an inability to successfully undergo protein catabolism with concomitant mitochondrial energy disruption. Methionine synthase catalyzes the methyl-Cbl dependent (re)methylation of homocysteine to methionine within the methionine cycle; a reaction required to produce this essential amino acid and generate S-adenosylmethionine, the most important cellular methyl-donor. Disruption of methionine synthase has wide-ranging implications for all methylation-dependent reactions, including epigenetic modification, but also for the intracellular folate pathway, since methionine synthase uses 5-methyltetrahydrofolate as a one-carbon donor. Folate-bound one-carbon units are also required for deoxythymidine monophosphate and de novo purine synthesis; therefore, the flow of single carbon units to each of these pathways must be regulated based on cellular needs. This review provides an overview on Cbl metabolism with a brief description of absorption and intracellular metabolic pathways. It also provides a description of folate-mediated one-carbon metabolism and its intersection with Cbl at the methionine cycle. Finally, a summary of recent advances in understanding of how both pathways are regulated is presented.


Assuntos
Deficiência de Ácido Fólico/metabolismo , Deficiência de Vitamina B 12/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Ácido Fólico/farmacologia , Humanos , Metilmalonil-CoA Mutase/metabolismo , Vitamina B 12/farmacologia
10.
Nat Commun ; 9(1): 2261, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891918

RESUMO

The folate and methionine cycles are crucial for biosynthesis of lipids, nucleotides and proteins, and production of the methyl donor S-adenosylmethionine (SAM). 5,10-methylenetetrahydrofolate reductase (MTHFR) represents a key regulatory connection between these cycles, generating 5-methyltetrahydrofolate for initiation of the methionine cycle, and undergoing allosteric inhibition by its end product SAM. Our 2.5 Å resolution crystal structure of human MTHFR reveals a unique architecture, appending the well-conserved catalytic TIM-barrel to a eukaryote-only SAM-binding domain. The latter domain of novel fold provides the predominant interface for MTHFR homo-dimerization, positioning the N-terminal serine-rich phosphorylation region near the C-terminal SAM-binding domain. This explains how MTHFR phosphorylation, identified on 11 N-terminal residues (16 in total), increases sensitivity to SAM binding and inhibition. Finally, we demonstrate that the 25-amino-acid inter-domain linker enables conformational plasticity and propose it to be a key mediator of SAM regulation. Together, these results provide insight into the molecular regulation of MTHFR.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Evolução Molecular , Humanos , Cinética , Espectrometria de Massas , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , NADP/metabolismo , Fosforilação , Domínios Proteicos , Dobramento de Proteína , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/antagonistas & inibidores , S-Adenosilmetionina/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
J Biol Chem ; 292(28): 11980-11991, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28572511

RESUMO

Vitamin B12 (cobalamin (Cbl)), in the cofactor forms methyl-Cbl and adenosyl-Cbl, is required for the function of the essential enzymes methionine synthase and methylmalonyl-CoA mutase, respectively. Cbl enters mammalian cells by receptor-mediated endocytosis of protein-bound Cbl followed by lysosomal export of free Cbl to the cytosol and further processing to these cofactor forms. The integral membrane proteins LMBD1 and ABCD4 are required for lysosomal release of Cbl, and mutations in the genes LMBRD1 and ABCD4 result in the cobalamin metabolism disorders cblF and cblJ. We report a new (fifth) patient with the cblJ disorder who presented at 7 days of age with poor feeding, hypotonia, methylmalonic aciduria, and elevated plasma homocysteine and harbored the mutations c.1667_1668delAG [p.Glu556Glyfs*27] and c.1295G>A [p.Arg432Gln] in the ABCD4 gene. Cbl cofactor forms are decreased in fibroblasts from this patient but could be rescued by overexpression of either ABCD4 or, unexpectedly, LMBD1. Using a sensitive live-cell FRET assay, we demonstrated selective interaction between ABCD4 and LMBD1 and decreased interaction when ABCD4 harbored the patient mutations p.Arg432Gln or p.Asn141Lys or when artificial mutations disrupted the ATPase domain. Finally, we showed that ABCD4 lysosomal targeting depends on co-expression of, and interaction with, LMBD1. These data broaden the patient and mutation spectrum of cblJ deficiency, establish a sensitive live-cell assay to detect the LMBD1-ABCD4 interaction, and confirm the importance of this interaction for proper intracellular targeting of ABCD4 and cobalamin cofactor synthesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Lisossomos/metabolismo , Erros Inatos do Metabolismo/genética , Modelos Moleculares , Mutação , Proteínas de Transporte Nucleocitoplasmático/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Substituição de Aminoácidos , Domínio Catalítico , Linhagem Celular Transformada , Células Cultivadas , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/enzimologia , Lisossomos/patologia , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Simulação de Acoplamento Molecular , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/deficiência , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia Estrutural de Proteína , Vitamina B 12/metabolismo
12.
Hum Mutat ; 38(8): 988-1001, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28497574

RESUMO

Mutations in the human MMAA gene cause the metabolic disorder cblA-type methylmalonic aciduria (MMA), although knowledge of the mechanism of dysfunction remains lacking. MMAA regulates the incorporation of the cofactor adenosylcobalamin (AdoCbl), generated from the MMAB adenosyltransferase, into the destination enzyme methylmalonyl-CoA mutase (MUT). This function of MMAA depends on its GTPase activity, which is stimulated by an interaction with MUT. Here, we present 67 new patients with cblA-type MMA, identifying 19 novel mutations. We biochemically investigated how missense mutations in MMAA in 22 patients lead to disease. About a third confer instability to the recombinant protein in bacterial and human expression systems. All 15 purified mutant proteins demonstrated wild-type like intrinsic GTPase activity and only one (p.Asp292Val), where the mutation is in the GTP binding domain, revealed decreased GTP binding. However, all mutations strongly decreased functional association with MUT by reducing GTPase activity stimulation upon incubation with MUT, while nine mutant proteins additionally lost the ability to physically bind MUT. Finally, all mutations interfered with gating the transfer of AdoCbl from MMAB to MUT. This work suggests loss of functional interaction between MMAA and MUT as a disease-causing mechanism that impacts processing and assembly of a cofactor to its destination enzyme.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Proteínas Mitocondriais/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/genética , Criança , Pré-Escolar , Cobamidas/metabolismo , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Metilmalonil-CoA Mutase/metabolismo , Proteínas Mitocondriais/genética , Mutação , Mutação de Sentido Incorreto/genética , Ligação Proteica
13.
J Inherit Metab Dis ; 40(2): 297-306, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27743313

RESUMO

5,10-Methylenetetrahydrofolate reductase (MTHFR) catalyzes the NADPH-dependent reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate using FAD as the cofactor. Severe MTHFR deficiency is the most common inborn error of folate metabolism, resulting in hyperhomocysteinemia and homocystinuria. Approximately 70 missense mutations have been described that cause severe MTHFR deficiency, however, in most cases their mechanism of dysfunction remains unclear. Few studies have investigated mutational specific defects; most of these assessing only activity levels from a handful of mutations using heterologous expression. Here, we report the in vitro expression of 22 severe MTHFR missense mutations and two known single nucleotide polymorphisms (p.Ala222Val, p.Thr653Met) in human fibroblasts. Significant reduction of MTHFR activity (<20 % of wild-type) was observed for five mutant proteins that also had highly reduced protein levels on Western blot analysis. The remaining mutations produced a spectrum of enzyme activity levels ranging from 22-122 % of wild-type, while the SNPs retained wild-type-like activity levels. We found increased thermolability for p.Ala222Val and seven disease-causing mutations all located in the catalytic domain, three of which also showed FAD responsiveness in vitro. By contrast, six regulatory domain mutations and two mutations clustering around the linker region showed increased thermostability compared to wild-type protein. Finally, we confirmed decreased affinity for NADPH in individual mutant enzymes, a result previously described in primary patient fibroblasts. Our expression study allows determination of significance of missense mutations in causing deleterious loss of MTHFR protein and activity, and is valuable in detection of aberrant kinetic parameters, but should not replace investigations in native material.


Assuntos
Homocistinúria/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Espasticidade Muscular/genética , Mutação de Sentido Incorreto/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Domínio Catalítico/genética , Fibroblastos/metabolismo , Genótipo , Humanos , Hiper-Homocisteinemia/genética , Cinética , Proteínas Mutantes/genética , NADP/genética , Polimorfismo de Nucleotídeo Único/genética , Transtornos Psicóticos/genética , Tetra-Hidrofolatos/genética
14.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 103-112, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27771510

RESUMO

An increasing number of studies indicate that each step of the intracellular processing of vitamin B12 or cobalamin (Cbl) involves protein-protein interactions. We have previously described a novel interaction between methionine synthase (MS) and MMACHC and its effect on the regulation of MMACHC activity. Our goal is to further characterize the interactions of MS with other potential partners in a so-called MS interactome. We dissected the interactions and their alterations by co-immunoprecipitation and DuoLink proximity ligation assays in fibroblasts with cblG, cblE, and cblC genetic defects affecting respectively the expression of MS, methionine synthase reductase (MSR) and MMACHC and in HepG2 cells transfected with corresponding siRNAs. We observed the known interactions of MS with MSR and with MMACHC as well as MMADHC with MMACHC, but we also observed novel interactions for MSR with MMACHC and with MMADHC and MS with MMADHC. Furthermore, we show that the absence of MS or MMACHC expression disrupts the interactions between the other interactome members, in cblC and cblG fibroblasts and in HepG2 cells transfected with siRNAs. Our data show that the processing of Cbl in cytoplasm occurs in a multiprotein complex composed of at least MS, MSR, MMACHC and MMADHC, which could contribute to shuttle safely and efficiently Cbl towards MS. Our data suggest that defective protein-protein interactions among key players of this pathway could contribute to the molecular mechanisms of the cblC, cblG and cblE genetic defects and provide novel insights into our understanding of the pathophysiology of inherited disorders of Cbl metabolism.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Proteínas de Transporte/metabolismo , Ferredoxina-NADP Redutase/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mapas de Interação de Proteínas , Vitamina B 12/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Oxirredutases , Mapeamento de Interação de Proteínas
15.
Hum Mutat ; 37(5): 427-38, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26872964

RESUMO

Severe 5,10-methylenetetrahydrofolate reductase (MTHFR) deficiency is caused by mutations in the MTHFR gene and results in hyperhomocysteinemia and varying severity of disease, ranging from neonatal lethal to adult onset. Including those described here, 109 MTHFR mutations have been reported in 171 families, consisting of 70 missense mutations, 17 that primarily affect splicing, 11 nonsense mutations, seven small deletions, two no-stop mutations, one small duplication, and one large duplication. Only 36% of mutations recur in unrelated families, indicating that most are "private." The most common mutation is c.1530A>G (numbered from NM_005957.4, p.Lys510 = ) causing a splicing defect, found in 13 families; the most common missense mutation is c.1129C>T (p.Arg377Cys) identified in 10 families. To increase disease understanding, we report enzymatic activity, detected mutations, and clinical onset information (early, <1 year; or late, >1 year) for all published patients available, demonstrating that patients with early onset have less residual enzyme activity than those presenting later. We also review animal models, diagnostic approaches, clinical presentations, and treatment options. This is the first large review of mutations in MTHFR, highlighting the wide spectrum of disease-causing mutations.


Assuntos
Homocistinúria/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Espasticidade Muscular/genética , Mutação , Idade de Início , Animais , Domínio Catalítico , Bases de Dados Genéticas , Modelos Animais de Doenças , Humanos , Recém-Nascido , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Triagem Neonatal , Transtornos Psicóticos/genética
16.
J Inherit Metab Dis ; 39(1): 115-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26025547

RESUMO

BACKGROUND: Severe methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare inborn defect disturbing the remethylation of homocysteine to methionine (<200 reported cases). This retrospective study evaluates clinical, biochemical genetic and in vitro enzymatic data in a cohort of 33 patients. METHODS: Clinical, biochemical and treatment data was obtained from physicians by using a questionnaire. MTHFR activity was measured in primary fibroblasts; genomic DNA was extracted from cultured fibroblasts. RESULTS: Thirty-three patients (mean age at follow-up 11.4 years; four deceased; median age at first presentation 5 weeks; 17 females) were included. Patients with very low (<1.5%) mean control values of enzyme activity (n = 14) presented earlier and with a pattern of feeding problems, encephalopathy, muscular hypotonia, neurocognitive impairment, apnoea, hydrocephalus, microcephaly and epilepsy. Patients with higher (>1.7-34.8%) residual enzyme activity had mainly psychiatric symptoms, mental retardation, myelopathy, ataxia and spasticity. Treatment with various combinations of betaine, methionine, folate and cobalamin improved the biochemical and clinical phenotype. During the disease course, patients with very low enzyme activity showed a progression of feeding problems, neurological symptoms, mental retardation, and psychiatric disease while in patients with higher residual enzyme activity, myelopathy, ataxia and spasticity increased. All other symptoms remained stable or improved in both groups upon treatment as did brain imaging in some cases. No clear genotype-phenotype correlation was obvious. DISCUSSION: MTHFR deficiency is a severe disease primarily affecting the central nervous system. Age at presentation and clinical pattern are correlated with residual enzyme activity. Treatment alleviates biochemical abnormalities and clinical symptoms partially.


Assuntos
Homocistinúria/enzimologia , Homocistinúria/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Espasticidade Muscular/enzimologia , Espasticidade Muscular/genética , Ataxia/genética , Betaína/uso terapêutico , Criança , Feminino , Ácido Fólico/uso terapêutico , Estudos de Associação Genética/métodos , Homocistinúria/tratamento farmacológico , Humanos , Deficiência Intelectual/genética , Masculino , Metionina/uso terapêutico , Espasticidade Muscular/tratamento farmacológico , Mutação/genética , Fenótipo , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/enzimologia , Transtornos Psicóticos/genética , Estudos Retrospectivos , Doenças da Medula Espinal/genética , Vitamina B 12/uso terapêutico
17.
J Biol Chem ; 290(49): 29167-77, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26483544

RESUMO

Conversion of vitamin B12 (cobalamin, Cbl) into the cofactor forms methyl-Cbl (MeCbl) and adenosyl-Cbl (AdoCbl) is required for the function of two crucial enzymes, mitochondrial methylmalonyl-CoA mutase and cytosolic methionine synthase, respectively. The intracellular proteins MMACHC and MMADHC play important roles in processing and targeting the Cbl cofactor to its destination enzymes, and recent evidence suggests that they may interact while performing these essential trafficking functions. To better understand the molecular basis of this interaction, we have mapped the crucial protein regions required, indicate that Cbl is likely processed by MMACHC prior to interaction with MMADHC, and identify patient mutations on both proteins that interfere with complex formation, via different mechanisms. We further report the crystal structure of the MMADHC C-terminal region at 2.2 Å resolution, revealing a modified nitroreductase fold with surprising homology to MMACHC despite their poor sequence conservation. Because MMADHC demonstrates no known enzymatic activity, we propose it as the first protein known to repurpose the nitroreductase fold solely for protein-protein interaction. Using small angle x-ray scattering, we reveal the MMACHC-MMADHC complex as a 1:1 heterodimer and provide a structural model of this interaction, where the interaction region overlaps with the MMACHC-Cbl binding site. Together, our findings provide novel structural evidence and mechanistic insight into an essential biological process, whereby an intracellular "trafficking chaperone" highly specific for a trace element cofactor functions via protein-protein interaction, which is disrupted by inherited disease mutations.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte da Membrana Mitocondrial/química , Vitamina B 12/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Doenças Metabólicas/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Chaperonas Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Nitrorredutases/química , Oxirredutases , Fenótipo , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
18.
Hum Mol Genet ; 24(20): 5667-76, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26199317

RESUMO

Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Doença de Depósito de Glicogênio Tipo IV/enzimologia , Doença de Depósito de Glicogênio/enzimologia , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso/enzimologia , Peptídeos/uso terapêutico , Sequência de Aminoácidos , Biologia Computacional , Sistema da Enzima Desramificadora do Glicogênio/efeitos dos fármacos , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Doença de Depósito de Glicogênio/tratamento farmacológico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio Tipo IV/genética , Humanos , Dados de Sequência Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência
19.
Hum Mutat ; 36(6): 611-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25736335

RESUMO

5,10-Methylenetetrahydrofolate reductase (MTHFR) deficiency is the most common inherited disorder of folate metabolism and causes severe hyperhomocysteinaemia. To better understand the relationship between mutation and function, we performed molecular genetic analysis of 76 MTHFR deficient patients, followed by extensive enzymatic characterization of fibroblasts from 72 of these. A deleterious mutation was detected on each of the 152 patient alleles, with one allele harboring two mutations. Sixty five different mutations (42 novel) were detected, including a common splicing mutation (c.1542G>A) found in 21 alleles. Using an enzyme assay in the physiological direction, we found residual activity (1.7%-42% of control) in 42 cell lines, of which 28 showed reduced affinity for nicotinamide adenine dinucleotide phosphate (NADPH), one reduced affinity for methylenetetrahydrofolate, five flavin adenine dinucleotide-responsiveness, and 24 abnormal kinetics of S-adenosylmethionine inhibition. Missense mutations causing virtually absent activity were found exclusively in the N-terminal catalytic domain, whereas missense mutations in the C-terminal regulatory domain caused decreased NADPH binding and disturbed inhibition by S-adenosylmethionine. Characterization of patients in this way provides a basis for improved diagnosis using expanded enzymatic criteria, increases understanding of the molecular basis of MTHFR dysfunction, and points to the possible role of cofactor or substrate in the treatment of patients with specific mutations.


Assuntos
Estudos de Associação Genética , Homocistinúria/diagnóstico , Homocistinúria/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/genética , Alelos , Processamento Alternativo , Ativação Enzimática , Éxons , Fibroblastos/metabolismo , Homocistinúria/metabolismo , Humanos , Íntrons , Cinética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Espasticidade Muscular/metabolismo , Mutação , Polimorfismo de Nucleotídeo Único , Estabilidade Proteica , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/genética , Transtornos Psicóticos/metabolismo
20.
Hum Mutat ; 35(12): 1449-58, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25125334

RESUMO

Methylmalonyl-CoA mutase (MUT) is an essential enzyme in propionate catabolism that requires adenosylcobalamin as a cofactor. Almost 250 inherited mutations in the MUT gene are known to cause the devastating disorder methylmalonic aciduria; however, the mechanism of dysfunction of these mutations, more than half of which are missense changes, has not been thoroughly investigated. Here, we examined 23 patient missense mutations covering a spectrum of exonic/structural regions, clinical phenotypes, and ethnic populations in order to determine their influence on protein stability, using two recombinant expression systems and a thermostability assay, and enzymatic function by measuring MUT activity and affinity for its cofactor and substrate. Our data stratify MUT missense mutations into categories of biochemical defects, including (1) reduced protein level due to misfolding, (2) increased thermolability, (3) impaired enzyme activity, and (4) reduced cofactor response in substrate turnover. We further demonstrate the stabilization of wild-type and thermolabile mutants by chemical chaperones in vitro and in bacterial cells. This in-depth mutation study illustrates the tools available for MUT enzyme characterization, guides future categorization of further missense mutations, and supports the development of alternative, chaperone-based therapy for patients not responding to current treatment.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Metilmalonil-CoA Mutase/genética , Mutação de Sentido Incorreto , Sequência de Bases , Western Blotting , Primers do DNA , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA