Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Dev Res ; 82(8): 1169-1181, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33983647

RESUMO

Urease plays a significant role in the pathogenesis of urolithiasis pyelonephritis, urinary catheter encrustation, hepatic coma, hepatic encephalopathy, and peptic acid duodenal ulcers. Salvinia molesta was explored to identify new bioactive compounds with particular emphasis on urease inhibitors. The aqueous methanol extract was fractionated using solvents of increasing polarity. A series of column chromatography and later HPLC were performed on butanol extract. The structures of the resulting pure compounds were resolved using NMR (1D and 2D), infrared, and mass spectroscopy. The novel isolate was evaluated for antioxidant activity (using DPPH, superoxide anion radical scavenging, oxidative burst, and Fe+2 chelation assays), anti-glycation behavior, anticancer activity, carbonic anhydrase inhibition, phosphodiesterase inhibition, and urease inhibition. One new glucopyranose derivative 6'-O-(3,4-dihydroxybenzoyl)-4'-O-(4-hydroxybenzoyl)-α/ß-D-glucopyranoside (1) and four known glycosides were identified. Glycoside 1 demonstrated promising antioxidant potential with IC50 values of 48.2 ± 0.3, 60.3 ± 0.6, and 42.1 ± 1.8 µM against DPPH, superoxide radical, and oxidative burst, respectively. Its IC50 in the Jack bean urease inhibition assay was 99.1 ± 0.8 µM. The mechanism-based kinetic studies presented that compound 1 is a mixed-type inhibitor of urease with a Ki value of 91.8 ± 0.1 µM. Finally, molecular dynamic simulations exploring the binding mode of compound 1 with urease provided quantitative agreement between estimated binding free energies and the experimental results. The studies corroborate the use of compound 1 as a lead for QSAR studies as an antioxidant and urease inhibitor. Moreover, it needs to be further evaluated through the animal model, that is, in vivo or tissue culture-based ex-vivo studies, to establish their therapeutic potential against oxidative stress phosphodiesterase-II and urease-induced pathologies.


Assuntos
Antioxidantes/isolamento & purificação , Extratos Vegetais/análise , Traqueófitas/química , Urease/antagonistas & inibidores , Antioxidantes/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Medições Luminescentes , Simulação de Acoplamento Molecular , Inibidores de Fosfodiesterase/isolamento & purificação , Urease/química
2.
Sci Rep ; 11(1): 1708, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462261

RESUMO

Ifosfamide is a widely used chemotherapeutic agent having broad-spectrum efficacy against several tumors. However, nephro, hepato, neuro cardio, and hematological toxicities associated with ifosfamide render its use limited. These side effects could range from organ failure to life-threatening situations. The present study aimed to evaluate the attenuating efficiency of Berberis vulgaris root extract (BvRE), a potent nephroprotective, hepatoprotective, and lipid-lowering agent, against ifosfamide-induced toxicities. The study design comprised eight groups of Swiss albino rats to assess different dose regimes of BvRE and ifosfamide. Biochemical analysis of serum (serum albumin, blood urea nitrogen, creatinine, alanine transaminase, aspartate transaminase, alkaline phosphatase, lactate dehydrogenase, total cholesterol, and triglycerides) along with complete blood count was performed. Kidney, liver, brain, and heart tissue homogenates were used to find malondialdehyde, catalase, and glutathione S-transferase levels in addition to the acetylcholinesterase of brain tissue. The results were further validated with the help of the histopathology of the selected organs. HeLa cells were used to assess the effect of BvRE on ifosfamide cytotoxicity in MTT assay. The results revealed that pre- and post-treatment regimens of BvRE, as well as the combination therapy exhibited marked protective effects against ifosfamide-induced nephro, hepato, neuro, and cardiotoxicity. Moreover, ifosfamide depicted a synergistic in vitro cytotoxic effect on HeLa cells in the presence of BvRE. These results corroborate that the combination therapy of ifosfamide with BvRE in cancer treatment can potentiate the anticancer effects of ifosfamide along with the amelioration of its conspicuous side effects.


Assuntos
Berberis/química , Encéfalo/efeitos dos fármacos , Ifosfamida/farmacologia , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Berberis/metabolismo , Contagem de Células Sanguíneas , Encéfalo/metabolismo , Encéfalo/patologia , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Ratos
3.
Eur J Pharm Sci ; 155: 105537, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890663

RESUMO

Chemokine receptors are key regulators of cell migration in terms of immunity and inflammation. Among these, CCR5 and CXCR4 play pivotal roles in cancer metastasis and HIV-1 transmission and infection. They act as essential co-receptors for HIV and furnish a route to the cell entry. In particular, inhibition of either CCR5 or CXCR4 leads very often the virus to shift to a more virulent dual-tropic strain. Therefore, dual receptor inhibition might improve the therapeutic strategies against HIV. In this study, we aimed to discover selective CCR5, CXCR4, and dual CCR5/CXCR4 antagonists using both receptor- and ligand-based computational methods. We employed this approach to fully incorporate the interaction attributes of the binding pocket together with molecular dynamics (MD) simulations and binding free energy calculations. The best hits were evaluated for their anti-HIV-1 activity against CXCR4- and CCR5-specific NL4.3 and BaL strains. Moreover, the Ca2+ mobilization assay was used to evaluate their antagonistic activity. From the 27 tested compounds, three were identified as inhibitors: compounds 27 (CCR5), 6 (CXCR4) and 3 (dual) with IC50 values ranging from 10.64 to 64.56 µM. The binding mode analysis suggests that the active compounds form a salt bridge with the glutamates and π-stacking interactions with the aromatic side chains binding site residues of the respective co-receptor. The presented hierarchical virtual screening approach provides essential aspects in identifying potential antagonists in terms of selectivity against a specific co-receptor. The compounds having multiple heterocyclic nitrogen atoms proved to be relatively more specific towards CXCR4 inhibition as compared to CCR5. The identified compounds serve as a starting point for further development of HIV entry inhibitors through synthesis and quantitative structure-activity relationship studies.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Sítios de Ligação , Antagonistas dos Receptores CCR5/farmacologia , Infecções por HIV/tratamento farmacológico , Humanos , Ligantes , Receptores CCR5
4.
Comput Biol Chem ; 89: 107376, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32979815

RESUMO

Human ubiquitin carboxyl-terminal hydrolase-2 (USP2) inhibitors, such as thiopurine analogs, have been reported to inhibit SARS-CoV papain-like proteases (PLpro). The PLpro have significant functional implications in the innate immune response during SARS-CoV-2 infection and considered an important antiviral target. Both proteases share strikingly similar USP fold with right-handed thumb-palm-fingers structural scaffold and conserved catalytic triad Cys-His-Asp/Asn. In this urgency situation of COVID-19 outbreak, there is a lack of in-vitro facilities readily available to test SARS-CoV-2 inhibitors in whole-cell assays. Therefore, we adopted an alternate route to identify potential USP2 inhibitor through integrated in-silico efforts. After an extensive virtual screening protocol, the best compounds were selected and tested. The compound Z93 showed significant IC50 value against Jurkat (9.67 µM) and MOTL-4 cells (11.8 µM). The binding mode of Z93 was extensively analyzed through molecular docking, followed by MD simulations, and molecular interactions were compared with SARS-CoV-2. The relative binding poses of Z93 fitted well in the binding site of both proteases and showed consensus π-π stacking and H-bond interactions with histidine and aspartate/asparagine residues of the catalytic triad. These results led us to speculate that compound Z93 might be the first potential chemical lead against SARS-CoV-2 PLpro, which warrants in-vitro evaluations.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Antivirais/química , COVID-19/virologia , Linhagem Celular Tumoral , Proteases 3C de Coronavírus/metabolismo , Inibidores de Protease de Coronavírus/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Células Jurkat , Modelos Moleculares , Estrutura Molecular , Ubiquitina Tiolesterase/metabolismo
5.
Biology (Basel) ; 9(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751610

RESUMO

Withania coagulans (W. coagulans) is well-known in herbal medicinal systems for its high biological potential. Different parts of the plant are used against insomnia, liver complications, asthma, and biliousness, as well as it is reported to be sedative, emetic, diuretic, antidiabetic antimicrobial, anti-inflammatory, antitumor, hepatoprotective, antihyperglycemic, cardiovascular, immuno-suppressive and central nervous system depressant. Withanolides present in W. coagulans have attracted an immense interest in the scientific field due to their diverse therapeutic applications. The current study deals with chemical and biological evaluation of chloroform, and n-butanol fractions of W. coagulans. The activity-guided fractionation of both extracts via multiple chromatographic steps and structure elucidation of pure isolates using spectroscopies (NMR, mass spectrometry, FTIR and UV-Vis) led to the identification of a new withanolide glycoside, withacogulanoside-B (1) from n-butanol extract and five known withanolides from chloroform extract [withanolid J (2), coagulin E (3), withaperuvin C (4), 27-hydroxywithanolide I (5), and ajugin E (6)]. Among the tested compounds, compound 5 was the most potent α-glucosidase inhibitor with IC50 = 66.7 ± 3.6 µM, followed by compound 4 (IC50: 407 ± 4.5 µM) and compound 2 (IC50: 683 ± 0.94 µM), while no antiglycation activity was observed with the six isolated compounds. Molecular docking was used to predict the binding potential and binding site interactions of these compounds as α-glucosidase inhibitors. Consequently, this study provides basis to discover specific antidiabetic compounds from W. coagulans.

6.
Infect Genet Evol ; 84: 104371, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32485331

RESUMO

HCV is a viral infection posing a severe global threat when left untreated progress to end-stage liver disease, including cirrhosis and HCC. The NS5B polymerase of HCV is the most potent target that harbors four allosteric binding sites that could interfere with the HCV infection. We present the discovery of a novel synthetic compound that harbors the potential of NS5B polymerase inhibition. All eight compounds belonging to the benzothiazine family of heterocycles displayed no cellular cytotoxicity in HepG2 cells at nontoxic dose concentration (200 µM). Subsequently, among eight compounds of the series, merely compound 5b exhibited significant inhibition of the expression of the HCV NS5B gene as compared to DMSO control in semi-quantitative PCR. Based on our western blot result, 5b at the range of 50, 100 and 200 µM induced 20, 40, and 70% inhibition of NS5B protein respectively. To estimate the binding potential, 5b was docked at respective allosteric sites followed by molecular dynamics (MD) simulations for a period of 20 ns. In addition, binding free energy calculation by MM-GB/PBSA method revealed a conserved interaction profile of residues lining the allosteric sites in agreement with the reported NS5B co-crystallized inhibitors. The presented results provide important information about a novel compound 5b which may facilitate the the discovery of novel inhibitors that tends to target multiple sites on NS5B polymerase.


Assuntos
Antivirais/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Sítio Alostérico , Antivirais/síntese química , Antivirais/química , Antivirais/farmacocinética , Benzotiazóis/química , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
7.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652981

RESUMO

The dental abnormalities are the typical features of many ectodermal dysplasias along with congenital malformations of nails, skin, hair, and sweat glands. However, several reports of non-syndromic/isolated tooth agenesis have also been found in the literature. The characteristic features of hypohidrotic ectodermal dysplasia (HED) comprise of hypodontia/oligodontia, along with hypohidrosis/anhidrosis, and hypotrichosis. Pathogenic variants in EDA, EDAR, EDARADD, and TRAF6, cause the phenotypic expression of HED. Genetic alterations in EDA and WNT10A cause particularly non-syndromic/isolated oligodontia. In the current project, we recruited 57 patients of 17 genetic pedigrees (A-Q) from different geographic regions of the world, including Pakistan, Egypt, Saudi Arabia, and Syria. The molecular investigation of different syndromic and non-syndromic dental conditions, including hypodontia, oligodontia, generalized odontodysplasia, and dental crowding was carried out by using exome and Sanger sequencing. We have identified a novel missense variant (c.311G>A; p.Arg104His) in WNT10A in three oligodontia patients of family A, two novel sequence variants (c.207delinsTT, p.Gly70Trpfs*25 and c.1300T>G; p.Try434Gly) in EDAR in three patients of family B and four patients of family C, respectively. To better understand the structural and functional consequences of missense variants in WNT10A and EDAR on the stability of the proteins, we have performed extensive molecular dynamic (MD) simulations. We have also identified three previously reported pathogenic variants (c.1076T>C; p.Met359Thr), (c.1133C>T; p.Thr378Met) and (c.594_595insC; Gly201Argfs*39) in EDA in family D (four patients), E (two patients) and F (one patient), correspondingly. Presently, our data explain the genetic cause of 18 syndromic and non-syndromic tooth agenesis patients in six autosomal recessive and X-linked pedigrees (A-F), which expand the mutational spectrum of these unique clinical manifestations.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1/patologia , Ectodisplasinas/genética , Receptor Edar/genética , Simulação de Dinâmica Molecular , Proteínas Wnt/genética , Displasia Ectodérmica Anidrótica Tipo 1/genética , Ectodisplasinas/química , Ectodisplasinas/metabolismo , Receptor Edar/química , Receptor Edar/metabolismo , Humanos , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Estabilidade Proteica , Estrutura Terciária de Proteína , Sequenciamento do Exoma , Proteínas Wnt/química , Proteínas Wnt/metabolismo
8.
Mol Genet Genomic Med ; 7(9): e902, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31347285

RESUMO

BACKGROUND: Jalili syndrome (JS) is a rare cone-rod dystrophy (CRD) associated with amelogenesis imperfecta (AI). The first clinical presentation of JS patients was published in 1988 by Jalili and Smith. Pathogenic mutations in the Cyclin and CBS Domain Divalent Metal Cation Transport Mediator 4 (CNNM4) magnesium transporter protein have been reported as the leading cause of this anomaly. METHODS: In the present study, a clinical and genetic investigation was performed in a consanguineous family of Pakistani origin, showing characteristic features of JS. Sanger sequencing was successfully used to identify the causative variant in CNNM4. Molecular dynamics (MD) simulations were performed to study the effect of amino acid change over CNNM4 protein. RESULTS: Sequence analysis of CNNM4 revealed a novel missense variant (c.1220G>T, p.Arg407Leu) in exon-1 encoding cystathionine-ß-synthase (CBS) domain. To comprehend the mutational consequences in the structure, the mutant p.Arg407Leu was modeled together with a previously reported variant (c.1484C>T, p.Thr495Ile) in the same domain. Additionally, docking analysis deciphered the binding mode of the adenosine triphosphate (ATP) cofactor. Furthermore, 60ns MD simulations were carried out on wild type (p.Arg407/p.Thr495) and mutants (p.Arg407Leu/p.Thr495Ile) to understand the structural and energetic changes in protein structure and its dynamic behavior. An evident conformational shift of ATP in the binding site was observed in simulated mutants disrupting the native ATP-binding mode. CONCLUSION: The novel identified variant in CNNM4 is the first report from the Pakistani population. Overall, the study is valuable and may give a novel insight into metal transport in visual function and biomineralization.


Assuntos
Amelogênese Imperfeita/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Distrofias de Cones e Bastonetes/genética , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Adolescente , Criança , Cristalografia por Raios X , Cistationina beta-Sintase/química , Éxons , Feminino , Humanos , Masculino , Mutação , Paquistão , Linhagem , Conformação Proteica , Domínios Proteicos , Análise de Sequência de Proteína
9.
Antioxidants (Basel) ; 8(6)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248160

RESUMO

Cisplatin is amongst the most potent chemotherapeutic drugs with applications in more than 50% of cancer treatments, but dose-dependent side effects limit its usefulness. Berberis vulgaris L. (B. vulgaris) has a proven role in several therapeutic applications in the traditional medicinal system. High-performance liquid chromatography was used to quantify berberine, a potent alkaloid in the methanolic root extract of B. vulgaris (BvRE). Berberine chloride in BvRE was found to be 10.29% w/w. To assess the prophylactic and curative protective effects of BvRE on cisplatin-induced nephrotoxicity, hepatotoxicity, and hyperlipidemia, in vivo toxicity trials were carried out on 25 healthy male albino Wistar rats (130-180 g). Both prophylactic and curative trials included a single dose of cisplatin (4 mg/kg, i.p.) and nine doses of BvRE (500 mg/kg/day, orally). An array of marked toxicity effects appeared in response to cisplatin dosage evident by morphological condition, biochemical analysis of serum (urea, creatinine, total protein, alanine transaminase, aspartate transaminase, total cholesterol, and triglyceride), and organ tissue homogenates (malondialdehyde and catalase). Statistically-significant (p < 0.05) variations were observed in various parameters. Moreover, histological studies of liver and kidney tissues revealed that the protective effect of BvRE effectively minimized and reversed nephrotoxic, hepatotoxic, and hyperlipidemic effects caused by cisplatin in both prophylactic and curative groups with relatively promising ameliorative effects in the prophylactic regimen. The in vitro cell viability effect of cisplatin, BvRE, and their combination was determined on HeLa cells using the tetrazolium (MTT) assay. MTT clearly corroborated that HeLa cells appeared to be less sensitive to cisplatin and berberine individually, while the combination of both at the same concentrations resulted in growth inhibition of HeLa cells in a remarkable synergistic way. The present study validated the use of BvRE as a protective agent in combination therapy with cisplatin.

10.
Biomolecules ; 9(4)2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925835

RESUMO

Tumorigenesis in humans is a multistep progression that imitates genetic changes leading to cell transformation and malignancy. Oncogenic kinases play a central role in cancer progression, rendering them putative targets for the design of anti-cancer drugs. The presented work aims to identify the potential multi-target inhibitors of oncogenic receptor tyrosine kinases (RTKs) and serine/threonine kinases (STKs). For this, chemoinformatics and structure-based virtual screening approaches were combined with an in vitro validation of lead hits on both cancerous and non-cancerous cell lines. A total of 16 different kinase structures were screened against ~739,000 prefiltered compounds using diversity selection, after which the top hits were filtered for promising pharmacokinetic properties. This led to the identification of 12 and 9 compounds against RTKs and STKs, respectively. Molecular dynamics (MD) simulations were carried out to better comprehend the stability of the predicted hit kinase-compound complexes. Two top-ranked compounds against each kinase class were tested in vitro for cytotoxicity, with compound F34 showing the most promising inhibitory activity in HeLa, HepG2, and Vero cell lines with IC50 values of 145.46 µM, 175.48 µM, and 130.52 µM, respectively. Additional docking of F34 against various RTKs was carried out to support potential multi-target inhibition. Together with reliable MD simulations, these results suggest the promising potential of identified multi-target STK and RTK scaffolds for further kinase-specific anti-cancer drug development toward combinatorial therapies.


Assuntos
Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Células Hep G2 , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Células Vero
11.
Eur J Med Chem ; 148: 384-396, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29477072

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that precisely attach an amino acid to its cognate tRNA. This process, which is essential for protein translation, is considered a viable target for the development of novel antimicrobial agents, provided species selective inhibitors can be identified. Aminoacyl-sulfamoyl adenosines (aaSAs) are potent orthologue specific aaRS inhibitors that demonstrate nanomolar affinities in vitro but have limited uptake. Following up on our previous work on substitution of the base moiety, we evaluated the effect of the N3-position of the adenine by synthesizing the corresponding 3-deazaadenosine analogues (aaS3DAs). A typical organism has 20 different aaRS, which can be split into two distinct structural classes. We therefore coupled six different amino acids, equally targeting the two enzyme classes, via the sulfamate bridge to 3-deazaadenosine. Upon evaluation of the inhibitory potency of the obtained analogues, a clear class bias was noticed, with loss of activity for the aaS3DA analogues targeting class II enzymes when compared to the equivalent aaSA. Evaluation of the available crystallographic structures point to the presence of a conserved water molecule which could have importance for base recognition within class II enzymes, a property that can be explored in future drug design efforts.


Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Anti-Infecciosos/química , Tubercidina/química , Aminoácidos/química , Desenho de Fármacos , Proteínas de Escherichia coli , Ácidos Sulfônicos/química , Tubercidina/farmacologia
12.
Bioorg Med Chem ; 24(8): 1778-85, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26968651

RESUMO

As part of a selection strategy for artificial nucleic acids (XNA) (to be considered as potential new information systems in vivo), we have carried out a modelling study on cyclohexanyl nucleic acids (CNA) duplexes and hairpins. CNA may form a duplex as well as hairpin structures, having the carbocyclic nucleosides in the (4)C1 conformation (with equatorial basis). The geometry of ds CNA is close to that of a HNA:RNA duplex. We demonstrated that CNA triphosphates function as a substrate for polymerases. Modelling experiments indicate that the monomers are probably presented to the polymerase in the (1)C4 conformation.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , RNA/química , DNA/síntese química , DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Polifosfatos/química , RNA/síntese química , RNA/metabolismo , Eletricidade Estática
13.
ChemMedChem ; 8(8): 1373-83, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23836539

RESUMO

The urgent need for new antibiotics poses a challenge to target un(der)exploited vital cellular processes. Thymidylate biosynthesis is one such process due to its crucial role in DNA replication and repair. Thymidylate synthases (TS) catalyze a crucial step in the biosynthesis of thymidine 5-triphosphate (TTP), an elementary building block required for DNA synthesis and repair. To date, TS inhibitors have only been successfully applied in anticancer therapy due to their lack of specificity for antimicrobial versus human enzymes. However, the discovery of a new family of TS enzymes (ThyX) in a range of pathogenic bacteria that is structurally and biochemically different from the "classic" TS (ThyA) has opened the possibility to develop selective ThyX inhibitors as potent antimicrobial drugs. Here, the interaction of the known inhibitor 5-(3-octanamidoprop-1yn-1yl)-2'-deoxyuridine-5'-monophosphate (1) with Mycobacterium tuberculosis ThyX enzyme is explored using molecular modeling starting from published crystal structures, with further confirmation through NMR experiments. While the deoxyuridylate (dUMP) moiety of compound 1 occupies the cavity of the natural substrate in ThyX, the rest of the ligand (the "5-alkynyl tail") extends to the outside of the enzyme between two of its four subunits. The hydrophobic pocket that accommodates the alkyl part of the tail is formed by displacement of Tyr 44.C, Tyr 108.A and Lys 165.A. Changes to the resonance of the Lys 165 NH3 group upon ligand binding were monitored in a titration experiment by 2D HISQC NMR. Guided by the results of the modeling and NMR studies, and inspired by the success of acyclic antiviral nucleosides, compounds where a 5-alkynyl uracyl moiety is coupled to an acyclic nucleoside phosphonate (ANP) were synthesized and evaluated. Of the compounds evaluated, sodium (6-(5-(3-octanamidoprop-1-yn-1-yl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)hexyl)phosphonate (3 e) exhibited 43 % of inhibitory effect on ThyX at 50 µM. While only modest activity was achieved, this is the first example of an ANP inhibiting ThyX, and these results can be used to further guide structural modifications to this class to develop more potent compounds with potential application as antibacterial agents acting through a novel mechanism of action.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimologia , Ácidos Fosforosos/química , Timidilato Sintase/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Ácidos Fosforosos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Especificidade por Substrato , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
14.
J Mol Model ; 19(8): 3187-200, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23625033

RESUMO

DNA gyrase subunit B, that catalyzes the hydrolysis of ATP, is an attractive target for the development of antibacterial drugs. This work is intended to rationalize molecular recognition at DNA gyrase B enzyme - inhibitor binding interface through the evaluation of different scoring functions in finding the correct pose and scoring properly 50 Escherichia coli DNA Gyrase B inhibitors belonging to five different classes. Improving the binding free energy calculation accuracy is further attempted by using rescoring schemes after short molecular dynamic simulations of the obtained docked complexes. These data are then compared with the corresponding experimental enzyme activity data. The results are analyzed from a structural point of view emphasizing the strengths and limitations of the techniques applied in the study.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , DNA Girase/química , Escherichia coli/química , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase II/química , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Escherichia coli/enzimologia , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Projetos de Pesquisa , Termodinâmica
15.
Eur J Med Chem ; 46(7): 2736-47, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21530019

RESUMO

DNA gyrase is a well-established antibacterial target consisting of two subunits, GyrA and GyrB, in a heterodimer A(2)B(2), where GyrB catalyzes the hydrolysis of ATP. Cyclothialidine (Ro 09-1437) has been considered as a promising inhibitor whose modifications might lead to more potent compounds against the enzyme. We report here for the first time, QSAR studies regarding to ATPase inhibitors of DNA Gyrase. 1D, 2D and 3D descriptors from DRAGON software were used on a set of 42 cyclothialidine derivatives. Based on the core of the cyclothialidine GR122222X, different conformations were created by using OMEGA. FRED was used to dock these conformers in the cavity of the GyrB subunit to select the best conformations, paying special attention to the 12-membered ring. Three QSAR models were developed considering the dimension of the descriptors. The models were robust, predictive and good in statistical significance, over 70% of the experimental variance was explained. Interpretability of the models was possible by extracting the SAR(s) encoded by these predictive models. Analyzing the compound-enzyme interactions of the complexes obtained by docking allowed us to increase the reliability of the information obtained for the QSAR models.


Assuntos
Antibacterianos/química , DNA Girase/química , Peptídeos Cíclicos/química , Inibidores da Topoisomerase II/química , Trifosfato de Adenosina/química , Bactérias/química , Bactérias/enzimologia , Sítios de Ligação , Desenho de Fármacos , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Termodinâmica
16.
J Mol Graph Model ; 29(5): 726-39, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21216167

RESUMO

Currently, bacterial diseases cause a death toll around 2 million people a year encouraging the search for new antimicrobial agents. DNA gyrase is a well-established antibacterial target consisting of two subunits, GyrA and GyrB, in a heterodimer A(2)B(2). GyrA is involved in DNA breakage and reunion and GyrB catalyzes the hydrolysis of ATP. The GyrB subunit from Escherichia coli has been investigated, namely the ATP binding pocket both considering the protein without ligands and bound with the inhibitors clorobiocin, novobiocin and 5'-adenylyl-ß-γ-imidodiphosphate. The stability of the systems was studied by molecular dynamics simulation with the further analysis of the time dependent root-mean-square coordinate deviation (RMSD) from the initial structure, and temperature factors. Moreover, exploration of the conformational space of the systems during the MD simulation was carried out by a clustering data mining technique using the average-linkage algorithm. Recognizing the key residues in the binding site of the enzyme that are involved in the binding mode with the aforementioned inhibitors was investigated by using two techniques: free energy decomposition and computational alanine scanning. The results from these simulations highlight the important residues in the ATP binding site and can be useful in the design process of potential new inhibitors.


Assuntos
DNA Girase/química , DNA Girase/metabolismo , Escherichia coli/enzimologia , Estrutura Terciária de Proteína , Inibidores da Topoisomerase II , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Alanina/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Análise por Conglomerados , DNA Girase/genética , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína
17.
Nucleic Acids Res ; 38(8): 2541-50, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20097909

RESUMO

Previous studies in our laboratory proved that certain functional groups are able to mimic the pyrophosphate moiety and act as leaving groups in the enzymatic polymerization of deoxyribonucleic acids by HIV-1 reverse transcriptase. When the potential leaving group possesses two carboxylic acid moieties linked to the nucleoside via a phosphoramidate bond, it is efficiently recognized by this error-prone enzyme, resulting in nucleotide incorporation into DNA. Here, we present a new efficient alternative leaving group, iminodiacetic acid, which displays enhanced kinetics and an enhanced elongation capacity compared to previous results obtained with amino acid deoxyadenosine phosphoramidates. Iminodiacetic acid phosphoramidate of deoxyadenosine monophosphate (IDA-dAMP) is processed by HIV-1 RT as a substrate for single nucleotide incorporation and displays a typical Michaelis-Menten kinetic profile. This novel substrate also proved to be successful in primer strand elongation of a seven-base template overhang. Modelling of this new substrate in the active site of the enzyme revealed that the interactions formed between the triphosphate moiety, magnesium ions and enzyme's residues could be different from those of the natural triphosphate substrate and is likely to involve additional amino acid residues. Preliminary testing for a potential metabolic accessibility lets us to envision its possible use in an orthogonal system for nucleic acid synthesis that would not influence or be influenced by genetic information from the outside.


Assuntos
Monofosfato de Adenosina/análogos & derivados , DNA/biossíntese , Glicina/análogos & derivados , Monofosfato de Adenosina/síntese química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , DNA/química , Glicina/síntese química , Glicina/química , Glicina/metabolismo , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , Cinética , Modelos Moleculares
18.
J Mol Model ; 16(1): 49-59, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19466613

RESUMO

Modeling studies were performed on HCV NS5B polymerase in an effort to design new inhibitors. The binding models of five different scaffold inhibitors were investigated and compared by using molecular dynamics simulations, free energy calculation and decomposition. Our results show Tyr448 plays the most critical role in the binding of most inhibitors. In addition, favorable contributions of residues Pro197, Arg200, Cys366, Met414 and Tyr448 in a deep hydrophobic pocket prove to be important for the selectivity of inhibitors. Furthermore, an optimized docking protocol was presented based on cross-docking the five inhibitors in the palm binding site of this enzyme using the Autodock program. This protocol was used later to virtually screen NCI and Maybridge diversity set libraries. The binding site was profiled via the statistics and analysis of the hydrogen bond networks formed between the receptor and the top-ranked diversity set compounds. Based on our detailed binding site analysis two useful rules were proposed to guide the selection of promising hits.


Assuntos
Hepacivirus/química , Ligantes , Simulação de Dinâmica Molecular , Proteínas não Estruturais Virais/química , Sítios de Ligação , Desenho de Fármacos , Inibidores Enzimáticos/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Termodinâmica , Proteínas não Estruturais Virais/antagonistas & inibidores
19.
Chemistry ; 15(22): 5463-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19308979

RESUMO

The enzymatic recognition of six-membered ring nucleoside triphosphates--in particular the 6'-triphosphates of (beta-D-glucopyranosyl)thymine, (2',3'-dideoxy-beta-D-glucopyranosyl)thymine, (3',4'-dideoxy-beta-D-glucopyranosyl)thymine and (2',3'-dideoxy-beta-D-glucopyranosyl)adenine--was investigated. Despite the facts that the pyranose nucleic acids obtained by polymerisation of these monomers do not hybridise in solution with DNA and that the geometry of a DNA strand in a natural duplex differs from that of a pyranose nucleic acid, elongation of the DNA duplex with all four nucleotide analogues by Vent (exo(-)) polymerase was observed. Modelling experiments showed that hydrogen bonds are formed when 2',3'-dideoxy-beta-homo-T building blocks or beta-D-gluco-T building blocks are incorporated opposite adenosine residues in the template but not when they are incorporated opposite thymine residues in the template. The model shows a near perfect alignment of a secondary hydroxy group at the end of the primer and the alpha-phosphate group of the incoming triphosphate. The results of these experiments provide new information on the role of the active site of the enzyme in the polymerisation reaction.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Glucose/metabolismo , Nucleotídeos/metabolismo , Domínio Catalítico , DNA/química , Glucose/química , Modelos Moleculares , Estrutura Molecular , Nucleotídeos/química
20.
J Virol ; 80(1): 149-60, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16352539

RESUMO

We report on the highly potent and selective antipestivirus activity of 5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP). The 50% effective concentration (EC50) for inhibition of bovine viral diarrhea virus (BVDV)-induced cytopathic effect formation was 0.04 +/- 0.01 microM. Comparable reduction of viral RNA synthesis (EC50 = 0.12 +/- 0.02 microM) and production of infectious virus (EC50= 0.074 +/- 0.003 microM) were observed. The selectivity index (ratio of 50% cytostatic concentration/EC50) of BPIP was approximately 2,000. BPIP was inactive against the hepatitis C virus subgenomic replicon and yellow fever virus but demonstrated weak activity against GB virus. Drug-resistant mutants were at least 300-fold less susceptible to BPIP than wild-type virus; showed cross-resistance to N-propyl-N-[2-(2H-1,2,4-triazino[5,6-b]indol-3-ylthio)ethyl]-1-propanamine (VP32947), and carried the F224S mutation in the viral RNA-dependent RNA polymerase (RdRp). When the F224S mutation was introduced into an infectious clone, the drug-resistant phenotype was obtained. BPIP did not inhibit the in vitro activity of recombinant BVDV RdRp, but did inhibit the activity of replication complexes (RCs). Computational docking revealed that F224 is located at the top of the finger domain of the polymerase. Docking of BPIP in the crystal structure of the BVDV RdRp revealed aromatic ring stacking, some hydrophobic contacts, and a hydrogen bond. Since two structurally unrelated compounds, i.e., BPIP and VP32947, target the same region of the BVDV RdRp, this position may be expected to be critical in the functioning of the polymerase or assembly of the RC. The potential of BPIP for the treatment of pestivirus and hepacivirus infections is discussed.


Assuntos
Antivirais/farmacologia , Pestivirus/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Triazinas/farmacologia , Replicação Viral/efeitos dos fármacos , Vírus da Diarreia Viral Bovina Tipo 1/efeitos dos fármacos , Farmacorresistência Viral , Imidazóis/farmacologia , Dose Letal Mediana , Mutação , Pestivirus/fisiologia , Piridinas/farmacologia , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Triazinas/química , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA