Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474314

RESUMO

The application of a biocompatible polymer nanocarrier can provide target delivery to tumor tissues, improved pharmacokinetics, controlled drug release, etc. Therefore, the proposed strategy was to use the water-soluble star-like copolymers with a Dextran core and Poly(N-isopropylacrylamide) grafts (D-g-PNIPAM) for conjugation with the widely used chemotherapy drugs in oncology-Cisplatin (Cis-Pt) and Doxorubicin (Dox). The molecular characteristics of the copolymer were received using size-exclusion chromatography. The physicochemical characterization of the D-g-PNIPAM-Cis-Pt (or Dox) nanosystem was conducted using dynamic light scattering and FTIR spectroscopy. Using traditional biochemical methods, a comparative analysis of the enhancement of the cytotoxic effect of free Cis-Pt and Dox in combination with D-g-PNIPAM copolymers was performed in cancer cells of the Lewis lung carcinoma line, which are both sensitive and resistant to Dox; in addition, the mechanism of their action in vitro was evaluated.


Assuntos
Resinas Acrílicas , Antineoplásicos , Polímeros , Polímeros/química , Água , Antineoplásicos/uso terapêutico , Doxorrubicina/química , Portadores de Fármacos/química , Micelas
2.
Pharmaceutics ; 15(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38004594

RESUMO

Cancer sonodynamic therapy (SDT) is the therapeutic strategy of a high-frequency ultrasound (US) combined with a special sonosensitizer that becomes cytotoxic upon US exposure. The growing number of newly discovered sonosensitizers and custom US in vitro treatment solutions push the SDT field into a need for systemic studies and reproducible in vitro experimental set-ups. In the current research, we aimed to compare two of the most used and suitable SDT in vitro set-ups-"sealed well" and "transducer in well"-in one systematic study. We assessed US pressure, intensity, and temperature distribution in wells under US irradiation. Treatment efficacy was evaluated for both set-ups towards cancer cell lines of different origins, treated with two promising sonosensitizer candidates-carbon nanoparticle C60 fullerene (C60) and herbal alkaloid berberine. C60 was found to exhibit higher sonotoxicity toward cancer cells than berberine. The higher efficacy of sonodynamic treatment with a "transducer in well" set-up than a "sealed well" set-up underlined its promising application for SDT in vitro studies. The "transducer in well" set-up is recommended for in vitro US treatment investigations based on its US-field homogeneity and pronounced cellular effects. Moreover, SDT with C60 and berberine could be exploited as a promising combinative approach for cancer treatment.

3.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674528

RESUMO

The acoustic pressure waves of ultrasound (US) not only penetrate biological tissues deeper than light, but they also generate light emission, termed sonoluminescence. This promoted the idea of its use as an alternative energy source for photosensitizer excitation. Pristine C60 fullerene (C60), an excellent photosensitizer, was explored in the frame of cancer sonodynamic therapy (SDT). For that purpose, we analyzed C60 effects on human cervix carcinoma HeLa cells in combination with a low-intensity US treatment. The time-dependent accumulation of C60 in HeLa cells reached its maximum at 24 h (800 ± 66 ng/106 cells). Half of extranuclear C60 is localized within mitochondria. The efficiency of the C60 nanostructure's sonoexcitation with 1 MHz US was tested with cell-based assays. A significant proapoptotic sonotoxic effect of C60 was found for HeLa cells. C60's ability to induce apoptosis of carcinoma cells after sonoexcitation with US provides a promising novel approach for cancer treatment.


Assuntos
Carcinoma , Fulerenos , Fotoquimioterapia , Feminino , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fulerenos/farmacologia , Células HeLa , Carcinoma/tratamento farmacológico
4.
Phys Med ; 104: 174-187, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36463582

RESUMO

At the Photo Injector Test facility at DESY in Zeuthen (PITZ), an R&D platform for electron FLASH and very high energy electron radiation therapy and radiation biology is being prepared (FLASHlab@PITZ). The beam parameters available at PITZ are worldwide unique. They are based on experiences from 20 + years of developing high brightness beam sources and an ultra-intensive THz light source demonstrator for ps scale electron bunches with up to 5 nC bunch charge at MHz repetition rate in bunch trains of up to 1 ms length, currently 22 MeV (upgrade to 250 MeV planned). Individual bunches can provide peak dose rates up to 1014 Gy/s, and 10 Gy can be delivered within picoseconds. Upon demand, each bunch of the bunch train can be guided to a different transverse location, so that either a "painting" with micro beams (comparable to pencil beam scanning in proton therapy) or a cumulative increase of absorbed dose, using a wide beam distribution, can be realized at the tumor. Full tumor treatment can hence be completed within 1 ms, mitigating organ movement issues. With extremely flexible beam manipulation capabilities, FLASHlab@PITZ will cover the current parameter range of successfully demonstrated FLASH effects and extend the parameter range towards yet unexploited short treatment times and high dose rates. A summary of the plans for FLASHlab@PITZ and the status of its realization will be presented.


Assuntos
Elétrons , Neoplasias , Humanos , Radiobiologia
5.
Nanoscale Adv ; 4(23): 5077-5088, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36504750

RESUMO

The development of precision cancer medicine relies on novel formulation strategies for targeted drug delivery to increase the therapeutic outcome. Biocompatible polymer nanoparticles, namely dextran-graft-polyacrylamide (D-g-PAA) copolymers, represent one of the innovative non-invasive approaches for drug delivery applications in cancer therapy. In this study, the star-like D-g-PAA copolymer in anionic form (D-g-PAAan) was developed for pH-triggered targeted drug delivery of the common chemotherapeutic drugs - doxorubicin (Dox) and cisplatin (Cis). The initial D-g-PAA copolymer was synthesized by the radical graft polymerization method, and then alkaline-hydrolyzed to get this polymer in anionic form for further use for drug encapsulation. The acidification of the buffer promoted the release of loaded drugs. D-g-PAAan nanoparticles increased the toxic potential of the drugs against human and mouse lung carcinoma cells (A549 and LLC), but not against normal human lung cells (HEL299). The drug-loaded D-g-PAAan-nanoparticles promoted further oxidative stress and apoptosis induction in LLC cells. D-g-PAAan-nanoparticles improved Dox accumulation and drugs' toxicity in a 3D LLC multi-cellular spheroid model. The data obtained indicate that the strategy of chemotherapeutic drug encapsulation within the branched D-g-PAAan nanoparticle allows not only to realize pH-triggered drug release but also to potentiate its cytotoxic, prooxidant and proapoptotic effects against lung carcinoma cells.

6.
Epigenomics ; 13(17): 1421-1437, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34558980

RESUMO

Pituitary adenomas (PAs) are common cranial tumors that affect the quality of life in patients. Early detection of PA is beneficial for avoiding clinical complications of this disease and increasing the quality of life. Noncoding RNAs, including long noncoding RNA, miRNA and circRNA, regulate protein expression, mostly by inhibiting the translation process. Studies have shown that dysregulation of noncoding RNAs is associated with PA. Hence understanding the expression pattern of noncoding RNAs can be considered a promising method for developing biomarkers. This article reviews data on the expression pattern of dysregulated noncoding RNAs involved in PA. Possible molecular mechanisms by which the dysregulated noncoding RNA could possibly induce PA are also described.


Lay abstract Pituitary adenomas (PA) are benign, slow-growing tumors of the pituitary gland. The sooner the tumor is diagnosed, the sooner can the patient be treated with medication. The early detection of this disease can reduce the need for surgery to remove the tumor. Noncoding RNAs are small molecules that regulate the functions and behavior of different cells. When the intracellular or extracellular concentration of these small molecules is altered, the functions and behavior of cells and tissues can be affected and changed. Quantifying and analyzing these molecules is a promising tool for the early detection of different diseases, including PA. This article reviews alterations in these small molecules and the relationship between these alterations and the incidence of PA.


Assuntos
Adenoma/genética , Biomarcadores Tumorais/genética , MicroRNAs/genética , Neoplasias Hipofisárias/genética , RNA Circular/genética , RNA não Traduzido/genética , Biotecnologia , Humanos , Neoplasias Hipofisárias/patologia , Qualidade de Vida , RNA Longo não Codificante/genética
7.
Biomedicines ; 8(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498309

RESUMO

Pituitary neuroendocrine tumors (PitNET) do not only belong to the most common intracranial neoplasms but seem to be generally more common than has been thought. Minimally invasive liquid biopsies have the potential to improve their early screening efficiency as well as monitor prognosis by facilitating the diagnostic procedures. This review aims to assess the potential of using liquid biopsies of different kinds of biomarker species that have only been obtained from solid pituitary tissues so far. Numerous molecules have been associated with the development of a PitNET, suggesting that it often develops from the cumulative effects of many smaller genetic or epigenetic changes. These minor changes eventually pile up to switch critical molecules into tumor-promoting states, which may be the key regulatory nodes representing the most potent marker substances for a diagnostic test. Drugs targeting these nodes may be superior for the therapeutic outcome and therefore the identification of such pituitary-specific cellular key nodes will help to accelerate their application in medicine. The ongoing genetic degeneration in pituitary adenomas suggests that repeated tumor profiling via liquid biopsies will be necessary for personalized and effective treatment solutions.

8.
Nanomaterials (Basel) ; 9(11)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671590

RESUMO

A nanosized drug complex was explored to improve the efficiency of cancer chemotherapy, complementing it with nanodelivery and photodynamic therapy. For this, nanomolar amounts of a non-covalent nanocomplex of Doxorubicin (Dox) with carbon nanoparticle C60 fullerene (C60) were applied in 1:1 and 2:1 molar ratio, exploiting C60 both as a drug-carrier and as a photosensitizer. The fluorescence microscopy analysis of human leukemic CCRF-CEM cells, in vitro cancer model, treated with nanocomplexes showed Dox's nuclear and C60's extranuclear localization. It gave an opportunity to realize a double hit strategy against cancer cells based on Dox's antiproliferative activity and C60's photoinduced pro-oxidant activity. When cells were treated with 2:1 C60-Dox and irradiated at 405 nm the high cytotoxicity of photo-irradiated C60-Dox enabled a nanomolar concentration of Dox and C60 to efficiently kill cancer cells in vitro. The high pro-oxidant and pro-apoptotic efficiency decreased IC50 16, 9 and 7 × 103-fold, if compared with the action of Dox, non-irradiated nanocomplex, and C60's photodynamic effect, correspondingly. Hereafter, a strong synergy of therapy arising from the combination of C60-mediated Dox delivery and C60 photoexcitation was revealed. Our data indicate that a combination of chemo- and photodynamic therapies with C60-Dox nanoformulation provides a promising synergetic approach for cancer treatment.

9.
Pharmaceutics ; 11(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717305

RESUMO

A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle-C60 fullerene (C60)-for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV-Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C60 binding in an aqueous solution. Complexation with C60 was found to promote Ber intracellular uptake. By increasing C60 concentration, the C60-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C60-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C60 improved its in vitro efficiency against cancer cells.

10.
Arch Toxicol ; 93(5): 1213-1226, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30989314

RESUMO

Cisplatin (Cis-Pt) is the cytotoxic agent widely used against tumors of various origin, but its therapeutic efficiency is substantially limited by a non-selective effect and high toxicity. Conjugation of Cis-Pt with nanocarriers is thought to be one option to enable drug targeting. The aim of this study was to estimate toxic effects of the nanocomplex formed by noncovalent interaction of C60 fullerene with Cis-Pt against Lewis lung carcinoma (LLC) cells in comparison with free drug. Scanning tunneling microscopy showed that the minimum size of C60-Cis-Pt nanoparticles in aqueous colloid solution was 1.1 nm whereas that of C60 fullerene was 0.72 nm, thus confirming formation of the nanocomplex. The cytotoxic effect of C60-Cis-Pt nanocomplex against LLC cells was shown to be higher with IC50 values 3.3 and 4.5 times lower at 48 h and 72 h, respectively, as compared to the free drug. 12.5 µM Cis-Pt had no effect on LLC cell viability and morphology while C60-Cis-Pt nanocomplex in Cis-Pt-equivalent concentration substantially decreased the cell viability, impaired their shape and adhesion, inhibited migration and induced accumulation in proapoptotic subG1 phase. Apoptosis induced by the C60-Cis-Pt nanocomplex was confirmed by caspase 3/7 activation and externalization of phosphatidylserine on the outer surface of LLC cells with the double Annexin V-FITC/PI staining. We assume that C60 fullerene as a component of the C60-Cis-Pt nanocomplex promoted Cis-Pt entry and intracellular accumulation thus contributing to intensification of the drug's toxic effect against lung cancer cells.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Cisplatino/administração & dosagem , Fulerenos/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/toxicidade , Concentração Inibidora 50 , Camundongos , Nanopartículas , Tamanho da Partícula , Fatores de Tempo
11.
Nanoscale Res Lett ; 14(1): 61, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30788638

RESUMO

Conventional anticancer chemotherapy is limited because of severe side effects as well as a quickly evolving multidrug resistance of the tumor cells. To address this problem, we have explored a C60 fullerene-based nanosized system as a carrier for anticancer drugs for an optimized drug delivery to leukemic cells.Here, we studied the physicochemical properties and anticancer activity of C60 fullerene noncovalent complexes with the commonly used anticancer drug doxorubicin. C60-Doxorubicin complexes in a ratio 1:1 and 2:1 were characterized with UV/Vis spectrometry, dynamic light scattering, and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The obtained analytical data indicated that the 140-nm complexes were stable and could be used for biological applications. In leukemic cell lines (CCRF-CEM, Jurkat, THP1 and Molt-16), the nanocomplexes revealed ≤ 3.5 higher cytotoxic potential in comparison with the free drug in a range of nanomolar concentrations. Also, the intracellular drug's level evidenced C60 fullerene considerable nanocarrier function.The results of this study indicated that C60 fullerene-based delivery nanocomplexes had a potential value for optimization of doxorubicin efficiency against leukemic cells.

12.
Free Radic Biol Med ; 124: 319-327, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29940354

RESUMO

Recent progress in nanobiotechnology has attracted interest to a biomedical application of the carbon nanostructure C60 fullerene since it possesses a unique structure and versatile biological activity. C60 fullerene potential application in the frame of cancer photodynamic therapy (PDT) relies on rapid development of new light sources as well as on better understanding of the fullerene interaction with cells. The aim of this study was to analyze C60 fullerene effects on human leukemic cells (CCRF-CEM) in combination with high power single chip light-emitting diodes (LEDs) light irradiation of different wavelengths: ultraviolet (UV, 365 nm), violet (405 nm), green (515 nm) and red (632 nm). The time-dependent accumulation of fullerene C60 in CCRF-CEM cells up to 250 ng/106 cells at 24 h with predominant localization within mitochondria was demonstrated with immunocytochemical staining and liquid chromatography mass spectrometry. In a cell viability assay we studied photoexcitation of the accumulated C60 nanostructures with ultraviolet or violet LEDs and could prove that significant phototoxic effects did arise. A less pronounced C60 fullerene phototoxic effect was observed after irradiation with green, and no effect was detected with red light. A C60 fullerene photoactivation with violet light induced substantial ROS generation and apoptotic cell death, confirmed by caspase3/7 activation and plasma membrane phosphatidylserine externalization. Our work proved C60 fullerene ability to induce apoptosis of leukemic cells after photoexcitation with high power single chip 405 nm LED as a light source. This underlined the potential for application of C60 nanostructure as a photosensitizer for anticancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Fulerenos/farmacologia , Leucemia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos
13.
Bioengineering (Basel) ; 4(2)2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28952517

RESUMO

Xylose is a general component of O-glycans in mammals. Core-xylosylation of N-glycans is only found in plants and helminth. Consequently, xylosylated N-glycans cause immunological response in humans. We have used the F-protein of the human respiratory syncytial virus (RSV), one of the main causes of respiratory tract infection in infants and elderly, as a model protein for vaccination. The RSV-F protein was expressed in CHO-DG44 cells, which were further modified by co-expression of ß1,2-xylosyltransferase from Nicotiana tabacum. Xylosylation of RSV-F N-glycans was shown by monosaccharide analysis and MALDI-TOF mass spectrometry. In immunogenic studies with a human artificial lymph node model, the engineered RSV-F protein revealed improved vaccination efficacy.

14.
J Exp Biol ; 216(Pt 8): 1423-9, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23264491

RESUMO

DNA methylation is a widely conserved epigenetic modification. The analysis of genome-scale DNA methylation patterns in various organisms suggests that major features of animal methylomes are widely conserved. However, based on the variation of DNA methyltransferase genes in invertebrates, it has also been proposed that DNA methylation could provide a molecular mechanism for ecological adaptation. We have now analyzed the methylome of the desert locust, Schistocerca gregaria, which represents an organism with a high degree of phenotypic plasticity. Using genome-scale bisulfite sequencing, we show here that the S. gregaria methylome is characterized by CpG- and exon-specific methylation and thus shares two major features with other animal methylomes. In contrast to other invertebrates, however, overall methylation levels were substantially higher and a significant fraction of transposons was methylated. Additionally, genic sequences were densely methylated in a pronounced bimodal pattern, suggesting a role for DNA methylation in the regulation of locust gene expression. Our results thus uncover a unique pattern of genome methylation in locusts and provide an important foundation for investigating the role of DNA methylation in locust phase polyphenism.


Assuntos
Metilação de DNA , Genoma de Inseto , Gafanhotos/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Ilhas de CpG , DNA/química , DNA/genética , Elementos de DNA Transponíveis , Feminino , Gafanhotos/química , Masculino , Dados de Sequência Molecular
15.
Cell Immunol ; 272(2): 144-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22082568

RESUMO

The immune system is regulated by the complex interaction of multiple cytokines, which are secreted signaling molecules affecting other cells. In this work, we studied the cytokine response to several well-known stimulants, such as OKT-3, Con A, PWM, and SEB. Healthy donor cells (PBMCs) were cultivated for up to 72 h and the mRNA levels and cytokine release of four key cytokines (IL-2, IL-4, IFN-γ, and TNF-α) were analyzed by RT-PCR and bead-based multiplex analyses. The generated cytokine profiles showed characteristic expression patterns and secretion kinetics for each cytokine and substance. PWM/SEB and OKT-3 led to a very fast and long-lasting immune response, whereas Con A induced the slowest cytokine production. Cytokine concentrations also differed greatly. The highest IFN-γ concentration was 1000 times higher than the respective IL-4 concentration. Gene expression and cytokine concentration profiles were strongly correlated during the time course. The chronological response of the donors' cytokine profiles coincided, but showed individual characteristics regarding the strength of the cytokine release. The comparison of stimulation experiments using freshly isolated and cryopreserved PBMCs showed that, for the observation of an immunological response at early points in time, gene expression experiments are more reliable than the measurement of cytokines in the cell culture supernatant. However, the freezing of cells influences the response significantly. The measurement of secreted proteins is the superior method at later points in time.


Assuntos
Criopreservação , Interferon gama/genética , Interleucina-2/genética , Interleucina-4/genética , Leucócitos Mononucleares/imunologia , Fator de Necrose Tumoral alfa/genética , Concanavalina A/farmacologia , Enterotoxinas/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Fatores Imunológicos/imunologia , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-2/biossíntese , Interleucina-2/imunologia , Interleucina-4/biossíntese , Interleucina-4/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Muromonab-CD3/farmacologia , Mitógenos de Phytolacca americana/farmacologia , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
16.
BMC Genomics ; 7: 319, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17181856

RESUMO

BACKGROUND: Up to now, microarray data are mostly assessed in context with only one or few parameters characterizing the experimental conditions under study. More explicit experiment annotations, however, are highly useful for interpreting microarray data, when available in a statistically accessible format. RESULTS: We provide means to preprocess these additional data, and to extract relevant traits corresponding to the transcription patterns under study. We found correspondence analysis particularly well-suited for mapping such extracted traits. It visualizes associations both among and between the traits, the hereby annotated experiments, and the genes, revealing how they are all interrelated. Here, we apply our methods to the systematic interpretation of radioactive (single channel) and two-channel data, stemming from model organisms such as yeast and drosophila up to complex human cancer samples. Inclusion of technical parameters allows for identification of artifacts and flaws in experimental design. CONCLUSION: Biological and clinical traits can act as landmarks in transcription space, systematically mapping the variance of large datasets from the predominant changes down toward intricate details.


Assuntos
Biologia Computacional/métodos , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Análise por Conglomerados , Interpretação Estatística de Dados , Análise Fatorial , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reprodutibilidade dos Testes
17.
J Mol Biol ; 358(4): 997-1009, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16580684

RESUMO

In metazoans, the nuclear export of bulk mRNAs is mediated by the export receptor TAP, together with its binding partner p15. A number of viral mRNAs, including the unspliced and partially spliced mRNA species of the human immunodeficiency virus (HIV), however, use an alternative export route via the importin beta-related export receptor CRM1. This raises the question of whether a subset of cellular mRNAs might be exported by CRM1 as well. To identify such mRNAs, we performed a systematic screen in different cell lines, using representational difference analyses of cDNA (cDNA-RDA). In HeLa and Cl-4 cells no cellular transcripts could be identified as exported via CRM1. In contrast, we found a number of CRM1-dependent mRNAs in Jurkat T cells, most of which are induced during a T cell response. One of the identified gene products, the dendritic cell marker CD83, was analyzed in detail. CD83 expression depends on a functional CRM1 pathway in activated Jurkat T cells as well as in a heterologous expression system, independent of activation. Our results point to an important role of the CRM1-dependent export pathway for the expression of CD83 and other genes under conditions of T cell activation.


Assuntos
Carioferinas/metabolismo , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Linfócitos T/metabolismo , Transporte Ativo do Núcleo Celular , Antígenos CD/genética , Sequência de Bases , Linhagem Celular , DNA Complementar/genética , Expressão Gênica , Genes env , HIV/genética , Células HeLa , Humanos , Imunoglobulinas/genética , Técnicas In Vitro , Células Jurkat , Carioferinas/antagonistas & inibidores , Ativação Linfocitária/genética , Glicoproteínas de Membrana/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Linfócitos T/imunologia , Proteína Exportina 1 , Antígeno CD83
18.
Dev Comp Immunol ; 30(3): 275-81, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-15975655

RESUMO

Tachylectin-related proteins are a recently characterized group of pattern recognition molecules, functioning in the innate immunity of various animals, from the ancient sponges to vertebrates. Tachylectins are characterized by six internal tandem repeats forming beta-propeller domains. We have identified and characterized a tachylectin-related gene in the colonial marine hydroid, Hydractinia echinata. The predicted gene product, termed CTRN, contained an N-terminal signal peptide and had a well-conserved tachylectin-like structure. RT-PCR analyses revealed only post-metamorphic expression while no mRNA was detected during embryonic development or in planula larvae. Exposure of colonies to LPS under conditions known to activate an immune response in Hydractinia did not result in upregulation of the gene. In situ hybridization analysis of metamorphosed animals detected CTRN transcripts only in a small subpopulation of neurons and their precursor cells, localized in a ring-like structure around the mouth of polyps. The same ring-like structure of CTRN expressing neurons was also observed in young polyp buds, predicting the position of the future mouth. This type of expression pattern can hardly be attributed to an immune-relevant gene. Thus, despite high structural similarity to tachylectins, this cnidarian member of this group seems to be an exception to all other tachylectins identified so far as it seems to have no function in cnidarian innate immunity.


Assuntos
Hidrozoários/química , Hidrozoários/genética , Lectinas/química , Lectinas/imunologia , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Animais , Hidrozoários/crescimento & desenvolvimento , Hidrozoários/imunologia , Lectinas/genética , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
19.
Dev Comp Immunol ; 28(10): 973-81, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15236928

RESUMO

Chitinases are enzymes that degrade chitin, the second most abundant polymer in nature. They are ubiquitous among living organisms where they play a role in development, food-digestion and innate immunity. We have cloned and characterized the first cnidarian chitinase cDNA from the hydroid Hydractinia. The Hydractinia chitinase exhibits a typical secreted family 18 hydrolases primary structure. In situ hybridization and RT-PCR experiments showed that it is exclusively expressed in ectodermal tissues of the animal, only following metamorphosis while undetectable in embryonic and larval stages. Most prominent expression was observed in the stolonal compartment of colonies, structures that are covered by a chitinous periderm. Chitinase mRNA was detected in new branching points along stolons and in hyperplastic stolons indicating a role of the enzyme in pattern formation and allorecognition. It was also expressed in polyps where it was mostly restricted to their basal portion. This expression pattern suggests that HyChit1 also fulfills a role in host defense, probably against fungal and nematode pathogens. Endodermal expression of HyChit1 has never been observed, suggesting that the enzyme does not participate in food-digestion.


Assuntos
Padronização Corporal/fisiologia , Quitinases/fisiologia , Hidrozoários/fisiologia , Sistema Imunitário/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Padronização Corporal/genética , Quitinases/genética , Quitinases/imunologia , Evolução Molecular , Hidrozoários/embriologia , Hidrozoários/enzimologia , Hidrozoários/imunologia , Hibridização In Situ , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
20.
FEBS Lett ; 547(1-3): 51-5, 2003 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-12860385

RESUMO

Myocardial ischemic preconditioning (IPC) is a potent endogenous mechanism of cardioprotection against ischemia-reperfusion injury. In this study we focused on the second phase of IPC as the most interesting in terms of therapeutic implementations. We aimed at the detection of genes, which are differentially expressed at 16 h after reperfusion. Preconditioning of canine myocardium was initiated by 5 min occlusion of the left anterior descending coronary artery with subsequent reperfusion. cDNA representational difference analysis in combination with microarray hybridization and reverse transcription polymerase chain reaction were used to reveal the changes in gene expression in canine hearts. We found that functionally related genes for tristetraproline (TTP), selectin E, matrix metalloproteinase 9, and tumor necrosis factor-alpha were highly upregulated at the late phase of IPC. The upregulation of TTP gene at the late phase of IPC, reported here for the first time, may represent a cardioprotective mechanism, which could be a promising perspective in clinical interventions against ischemia-reperfusion injuries of the heart.


Assuntos
Regulação da Expressão Gênica/fisiologia , Inflamação/genética , Precondicionamento Isquêmico Miocárdico , Animais , Cães , Selectina E/genética , Inflamação/fisiopatologia , Metaloproteinase 9 da Matriz/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA