Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 224: 112306, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562830

RESUMO

Water-filtered infrared A and visible light (wIRA/VIS), shown to reduce chlamydial infections in vitro and in vivo, might represent an innovative therapeutic approach against trachoma, a neglected tropical disease caused by ocular infection with the bacterium C. trachomatis. In this in vivo study, we assessed the impact of wIRA radiation in combination with VIS (wavelength range 595-1400 nm, intensity 2100 W/m2) on the retina and cornea in a guinea pig animal model of inclusion conjunctivitis. We investigated the effects 19 days after wIRA/VIS irradiation by comparing a single and double wIRA/VIS treatment with a sham control. By immunolabeling and western blot analyses of critical heat- and stress-responsive proteins, we could not detect wIRA/VIS-induced changes in their expression pattern. Also, immunolabeling of specific retinal marker proteins revealed no changes in their expression pattern caused by the treatment. Our preclinical study suggests wIRA/VIS as a promising and safe therapeutic tool to treat ocular chlamydial infections.


Assuntos
Córnea/efeitos da radiação , Proteínas do Olho/efeitos da radiação , Proteínas de Choque Térmico/efeitos da radiação , Temperatura Alta , Raios Infravermelhos , Luz , Retina/efeitos da radiação , Animais , Córnea/metabolismo , Proteínas do Olho/metabolismo , Cobaias , Proteínas de Choque Térmico/metabolismo , Retina/metabolismo , Tracoma/radioterapia , Tracoma/veterinária , Água
2.
J Photochem Photobiol B ; 209: 111953, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32653859

RESUMO

Trachoma is a devastating neglected tropical disease caused by Chlamydia trachomatis and the leading global cause of infectious blindness. Although antibiotic treatment against trachoma is efficient (SAFE strategy), additional affordable therapeutic strategies are of high interest. Water-filtered infrared A and visible light (wIRA/VIS) irradiation has proven to reduce chlamydial infectivity in vitro and ex vivo. The aim of this study was to evaluate whether wIRA/VIS can reduce chlamydial infection load and/or ocular pathology in vivo, in a guinea pig model of inclusion conjunctivitis. Guinea pigs were infected with 1 × 106 inclusion-forming units/eye of Chlamydia caviae via the ocular conjunctiva on day 0. In infected animals, wIRA/VIS irradiation (2100 W/m2) was applied on day 2 (single treatment) and on days 2 and 4 (double treatment) post-infection (pi). wIRA/VIS reduced the clinical pathology score on days 7 and 14 pi and the conjunctival chlamydial load on days 2, 4, 7, and 14 pi in comparison with C. caviae-infected, not irradiated, controls. Furthermore, numbers of chlamydial inclusions were decreased in wIRA/VIS treated C. caviae-infected guinea pigs on day 21 pi compared to C. caviae-infected, non-irradiated, controls. Double treatment with wIRA/VIS (days 2 and 4 pi) was more efficient than a single treatment on day 2 pi. wIRA/VIS treatment did neither induce macroscopic nor histologic changes in ocular tissues. Our results indicate that wIRA/VIS shows promising efficacy to reduce chlamydial infectivity in vivo without causing irradiation related pathologies in the follow-up period. wIRA/VIS irradiation is a promising approach to reduce trachoma transmission and pathology of ocular chlamydial infection.


Assuntos
Chlamydia/isolamento & purificação , Conjuntivite de Inclusão/radioterapia , Raios Infravermelhos , Luz , Animais , Contagem de Colônia Microbiana , Conjuntivite de Inclusão/microbiologia , Modelos Animais de Doenças , Cobaias
3.
Proc Natl Acad Sci U S A ; 112(40): 12396-401, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392532

RESUMO

Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles.


Assuntos
Partículas alfa , Dano ao DNA , DNA/metabolismo , Retina/efeitos da radiação , Animais , DNA/química , DNA/genética , Relação Dose-Resposta à Radiação , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Retina/citologia , Retina/metabolismo , Técnicas de Cultura de Tecidos , Raios X
4.
Photochem Photobiol ; 88(1): 135-46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22053955

RESUMO

Near infrared (NIR) and X-rays are radiations from different sides of the wavelength spectrum but both are used during medical treatments, as they have severe impacts on cellular processes, including metabolism, gene expression, proliferation and survival. However, both radiations differ strictly in their consequences for exposed patients: NIR effects are generally supposed to be positive, mostly ascribed to a stimulation of metabolism, whereas X-ray leads to genetic instability, an increase of reactive oxygen species (ROS) and DNA damages and finally to cellular death by apoptosis in tumor cells. Since genomic stability after X-irradiation depends on the mitochondrial metabolism, which is well known to be regulated by NIR, we analyzed the impact of NIR on cellular responses of fibroblasts, retinal progenitor cells and keratinocytes to X-radiation. Our data show that previous exposure to naturally occurring doses of nonthermal NIR combined with clinically relevant X-ray doses leads to (1) increased genomic instability, indicated by elevated ratios of mitotic catastrophes, (2) increased ROS, (3) higher amounts of X-irradiated cells entering S-phase and (4) impaired DNA double-strand break repair. Taken together, our data show tremendous effects of NIR on cellular responses to X-rays, probably affecting the results of radiotherapy after NIR exposure during cancer treatment.


Assuntos
Radiação Ionizante , Animais , Apoptose/efeitos da radiação , Sequência de Bases , Primers do DNA , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/patologia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA