Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38463956

RESUMO

Alzheimer's disease (AD) is a major progressive neurodegenerative disorder of the aging population. High post-menopausal levels of the pituitary gonadotropin follicle-stimulating hormone (FSH) are strongly associated with the onset of AD, and we have shown recently that FSH directly activates the hippocampal Fshr to drive AD-like pathology and memory loss in mice. To establish a role for FSH in memory loss, we used female 3xTg;Fshr+/+, 3xTg;Fshr+/- and 3xTg;Fshr-/- mice that were either left unoperated or underwent sham surgery or ovariectomy at 8 weeks of age. Unoperated and sham-operated 3xTg;Fshr-/- mice were implanted with 17ß-estradiol pellets to normalize estradiol levels. Morris Water Maze and Novel Object Recognition behavioral tests were performed to study deficits in spatial and recognition memory, respectively, and to examine the effects of Fshr depletion. 3xTg;Fshr+/+ mice displayed impaired spatial memory at 5 months of age; both the acquisition and retrieval of the memory were ameliorated in 3xTg;Fshr-/- mice and, to a lesser extent, in 3xTg;Fshr+/- mice- -thus documenting a clear gene-dose-dependent prevention of hippocampal-dependent spatial memory impairment. At 5 and 10 months, sham-operated 3xTg;Fshr-/- mice showed better memory performance during the acquasition and/or retrieval phases, suggesting that Fshr deletion prevented the progression of spatial memory deficits with age. However, this prevention was not seen when mice were ovariectomized, except in the 10-month-old 3xTg;Fshr-/- mice. In the Novel Object Recognition test performed at 10 months, all groups of mice, except ovariectomized 3xTg;Fshr-/- mice showed a loss of recognition memory. Consistent with the neurobehavioral data, there was a gene-dose-dependent reduction mainly in the amyloid ß40 isoform in whole brain extracts. Finally, serum FSH levels < 8 ng/mL in 16-month-old APP/PS1 mice were associated with better retrieval of spatial memory. Collectively, the data provide compelling genetic evidence for a protective effect of inhibiting FSH signaling on the progression of spatial and recognition memory deficits in mice, and lay a firm foundation for the use of an FSH-blocking agent for the early prevention of cognitive decline in postmenopausal women.

2.
Mol Nutr Food Res ; 67(21): e2300156, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37439457

RESUMO

SCOPE: The goal of this study is to investigate the effects of a bioactive dietary polyphenol preparation (BDPP), which is made up of grape-derived polyphenols, on microglial responses, as well as the underlying molecular mechanisms in depression and anxiety-like behaviors. METHODS AND RESULTS: The study finds that treatment with BDPP significantly decreases depression-like and anxiety-like behaviors induced by chronic stress in mice, while leaving their locomotor activity unaffected. The study also finds that BDPP treatment reverses microglia activation in the amygdala and hippocampal formation, regions of the brain involved in emotional regulation, from an amoeboid shape to ramified shape. Additionally, BDPP treatment modulates the release of pro-inflammatory cytokines such as interleukin-6 via high mobility box 1 protein and the receptor for advanced glycation end products (HMGB1-RAGE) signaling pathway in activated microglia induced by chronic stress. CONCLUSION: The findings suggest regional heterogeneity in microglial responses following chronic stress in subregions of the corticolimbic circuit. Specifically, activation of the immune-inflammatory HMGB1-RAGE pathway may provide a new avenue for preventing the manifestation of psychiatric impairments including stress-induced anxiety- and depression-like behavior, using bioactive and bioavailable polyphenols.


Assuntos
Depressão , Proteína HMGB1 , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Microglia , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Ansiedade/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/metabolismo
3.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034623

RESUMO

Scope: The goal of this study is to investigate the effects of a bioactive dietary polyphenol preparation (BDPP), which is made up of grape-derived polyphenols, on microglial responses, as well as the underlying molecular mechanisms in depression and anxiety-like behaviors. Methods and results: We find that treatment with BDPP significantly decreased depression-like and anxiety-like behaviors induced by chronic stress in mice, while leaving their locomotor activity unaffected. We also find that BDPP treatment reversed microglia activation in the amygdala and hippocampal formation, regions of the brain involved in emotional regulation, from an amoeboid shape to ramified shape. Additionally, BDPP treatment modulates the release of pro-inflammatory cytokines such as interleukin-6 via high mobility box 1 protein and the receptor for advanced glycation end products (HMGB1-RAGE) signaling pathway in activated microglia induced by chronic stress. Conclusion: Our findings suggest regional heterogeneity in microglial responses following chronic stress in subregions of the corticolimbic circuit. Specifically, activation of the immune-inflammatory HMGB1-RAGE pathway might provide a new avenue for therapeutic intervention in stress-induced anxiety- and depression-like behavior, using bioactive and bioavailable polyphenols.

4.
Brain Behav Immun ; 91: 350-368, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096252

RESUMO

Chronic stress disrupts immune homeostasis while gut microbiota-derived metabolites attenuate inflammation, thus promoting resilience to stress-induced immune and behavioral abnormalities. There are both peripheral and brain region-specific maladaptations of the immune response to chronic stress that produce interrelated mechanistic considerations required for the design of novel therapeutic strategies for prevention of stress-induced psychological impairment. This study shows that a combination of probiotics and polyphenol-rich prebiotics, a synbiotic, attenuates the chronic-stress induced inflammatory responses in the ileum and the prefrontal cortex promoting resilience to the consequent depressive- and anxiety-like behaviors in male mice. Pharmacokinetic studies revealed that this effect may be attributed to specific synbiotic-produced metabolites including 4-hydroxyphenylpropionic, 4-hydroxyphenylacetic acid and caffeic acid. Using a model of chronic unpredictable stress, behavioral abnormalities were associated to strong immune cell activation and recruitment in the ileum while inflammasome pathways were implicated in the prefrontal cortex and hippocampus. Chronic stress also upregulated the ratio of activated proinflammatory T helper 17 (Th17) to regulatory T cells (Treg) in the liver and ileum and it was predicted with ingenuity pathway analysis that the aryl hydrocarbon receptor (AHR) could be driving the synbiotic's effect on the ileum's inflammatory response to stress. Synbiotic treatment indiscriminately attenuated the stress-induced immune and behavioral aberrations in both the ileum and the brain while in a gut-immune co-culture model, the synbiotic-specific metabolites promoted anti-inflammatory activity through the AHR. Overall, this study characterizes a novel synbiotic treatment for chronic-stress induced behavioral impairments while defining a putative mechanism of gut-microbiota host interaction for modulating the peripheral and brain immune systems.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Ansiedade , Masculino , Camundongos , Prebióticos , Linfócitos T Reguladores
5.
Sci Rep ; 9(1): 3546, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837576

RESUMO

Dietary polyphenols promote memory in models of sleep deprivation (SD), stress, and neurodegeneration. The biological properties of dietary polyphenols greatly depend upon the bioavailability of their phenolic metabolites derivatives, which are modulated by gut microbiota. We recently demonstrated that supplementation with grape-derived bioactive dietary polyphenol preparation (BDPP) improves SD-induced cognitive impairment. This study examined the role of the gut microbiota in the ability of BDPP to prevent memory impairment in response to SD. C57BL6/J mice, treated with antibiotics mix (ABX) or BDPP or both, were sleep-deprived at the end of a fear conditioning training session and fear memory was assessed the next day. Gut microbiota composition was analyzed in fecal samples and BDPP-driven phenolic acid metabolites extraction was measured in plasma. We report that the beneficial effect of BDPP on memory in SD is attenuated by ABX-induced dysbiosis. We identified specific communities of fecal microbiota that are associated with the bioavailability of BDPP-derived phenolic acids, which in turn, are associated with memory promotion. These results suggest the gut microbiota composition significantly affects the bioavailability of phenolic acids that drive the dietary polyphenols' cognitive resilience property. Our findings provide a preclinical model with which to test the causal association of gut microbiota-polyphenols, with the ultimate goal of potential developing dietary polyphenols for the prevention/treatment of cognitive impairment.


Assuntos
Cognição/efeitos dos fármacos , Dieta , Microbioma Gastrointestinal , Hidroxibenzoatos/farmacocinética , Polifenóis/farmacologia , Animais , Disponibilidade Biológica , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
6.
J Nutr Biochem ; 64: 170-181, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30530257

RESUMO

The intestinal microbiota actively converts dietary flavanols into phenolic acids, some of which are bioavailable in vivo and may promote resilience to select neurological disorders by interfering with key pathologic mechanisms. Since every person harbors a unique set of gut bacteria, we investigated the influence of the gut microbiota's interpersonal heterogeneity on the production and bioavailability of flavonoid metabolites that may interfere with the misfolding of alpha (α)-synuclein, a process that plays a central role in Parkinson's disease and other α-synucleinopathies. We generated two experimental groups of humanized gnotobiotic mice with compositionally diverse gut bacteria and orally treated the mice with a flavanol-rich preparation (FRP). The two gnotobiotic mouse groups exhibited distinct differences in the generation and bioavailability of FRP-derived microbial phenolic acid metabolites that have bioactivity towards interfering with α-synuclein misfolding or inflammation. We also demonstrated that these bioactive phenolic acids are effective in modulating the development and progression of motor dysfunction in a Drosophila model of α-synucleinopathy. Lastly, through in vitro bacterial fermentation studies, we identified select bacteria that are capable of supporting the generation of these bioavailable and bioactive phenolic acids. Outcomes from our studies provide a better understanding of how interpersonal heterogeneity in the gut microbiota differentially modulates the efficacy of dietary flavanols to protect against select pathologic mechanisms. Collectively, our findings provide the basis for future developments of probiotic, prebiotic, or synbiotic approaches for modulating the onset and/or progression of α-synucleinopathies and other neurological disorders involving protein misfolding and/or inflammation.


Assuntos
Microbioma Gastrointestinal/fisiologia , Polifenóis/farmacocinética , Sinucleinopatias/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Animais , Animais Geneticamente Modificados , Disponibilidade Biológica , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Drosophila , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Polifenóis/metabolismo , Agregação Patológica de Proteínas/metabolismo , Dobramento de Proteína , Organismos Livres de Patógenos Específicos , Sinucleinopatias/patologia , alfa-Sinucleína/química , alfa-Sinucleína/genética
7.
Commun Biol ; 1: 42, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271926

RESUMO

Grape-derived polyphenols have been investigated for their role in promoting memory in model systems of stress, but little is known about select subpopulations of neurons that are influenced by polyphenols to improve memory performance. Granule neurons in the hippocampal dentate gyrus are vulnerable to stressors that impair contextual memory function and can be influenced by dietary polyphenols. We utilized a c-fos-tTA/TRE-ChR2 optogenetics model in which neurons activated during fear learning are labeled with ChR2-mCherry and can be optically reactivated in a different context to recapitulate the behavioral output of a related memory. Treatment with dietary polyphenols increased fear memory recall and ChR2-mCherry expression in dentate gyrus neurons, suggesting that dietary polyphenols promote recruitment of neurons to a fear memory engram. We show that dietary polyphenols promote memory function and offer a general method to map cellular subpopulations influenced by dietary polyphenols, in part through the mechanism of c-Fos expression enhancement.

8.
Biol Open ; 7(10)2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-29970476

RESUMO

In this study, we developed an experimental protocol leveraging enhanced reduced representation bisulphite sequencing to investigate methylation and gene expression patterns in the hippocampus in response to polyphenolic compounds. We report that the administration of a standardized bioavailable polyphenolic preparation (BDPP) differentially influences methylated cytosine patterns in introns, UTR and exons in hippocampal genes. We subsequently established that dietary BDPP-mediated changes in methylation influenced the transcriptional pattern of select genes that are involved in synaptic plasticity. In addition, we showed dietary BDPP mediated changes in the transcriptional pattern of genes associated with epigenetic modifications, including members of the DNA methyl transferase family (DNMTs) and the Ten-eleven translocation methylcytosine dioxygenases family (TETs). We then identified the specific brain bioavailable polyphenols effective in regulating the transcription of DNMTs, TETs and a subset of differentially methylated synaptic plasticity-associated genes. The study implicates the regulation of gene expression in the hippocampus by epigenetic mechanisms as a novel therapeutic target for dietary polyphenols.

9.
FASEB J ; 32(10): 5390-5404, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29702026

RESUMO

Previous evidence has suggested that dietary supplementation with a bioactive dietary polyphenol preparation (BDPP) rescues impairment of hippocampus-dependent memory in a mouse model of sleep deprivation (SD). In the current study, we extend our previous evidence and demonstrate that a mechanism by which dietary BDPP protects against SD-mediated cognitive impairment is via mechanisms that involve phosphorylation of the mammalian target of rapamycin complex 1 and its direct downstream targets, including the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) and the ribosomal protein S6 kinase ß-1 (p70S6K). In additional mechanistic studies in vitro, we identified the brain bioavailable phenolic metabolites derived from the metabolism of dietary BDPP that are responsible for the attenuation of SD-mediated memory impairments. On the basis of high-throughput bioavailability studies of brain bioavailable metabolites after dietary BDPP treatment, we found that select polyphenol metabolites [ e.g., cyanidin-3'- O-glucoside and 3-(3'-hydroxyphenyl) propionic acid] were able to rescue mTOR and p70S6K phosphorylation in primary cortico-hippocampal neuronal cultures, as well as rescue 4E-BP1 phosphorylation in response to treatment with 4EGI-1, a specific inhibitor of eIF4E-eIF4G interaction. Our findings reveal a previously unknown role for dietary polyphenols in the rescue of SD-mediated memory impairments via mechanisms involving the promotion of protein translation.-Frolinger, T., Smith, C., Cobo, C. F., Sims, S., Brathwaite, J., de Boer, S., Huang, J., Pasinetti, G. M. Dietary polyphenols promote resilience against sleep deprivation-induced cognitive impairment by activating protein translation.


Assuntos
Disfunção Cognitiva , Hipocampo , Neurônios , Polifenóis/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Privação do Sono , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fosfoproteínas/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Privação do Sono/tratamento farmacológico , Privação do Sono/metabolismo , Privação do Sono/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA