Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Imaging (Bellingham) ; 5(2): 021211, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29430480

RESUMO

Elastography measures tissue strain, which can be interpreted under certain simplifying assumptions to be representative of the underlying stiffness distribution. This is useful in cancer diagnosis where tumors tend to have a different stiffness to healthy tissue and has also shown potential to provide indication of the degree of bonding at tumor-tissue boundaries, which is clinically useful because of its dependence on tumor pathology. We consider the changes in axial strain for the case of a symmetrical model undergoing uniaxial compression, studied by characterizing changes in tumor contrast transfer efficiency (CTE), inclusion to background strain contrast and strain contrast generated by slip motion, as a function of Young's modulus contrast and applied strain. We present results from a finite element simulation and an evaluation of these results using tissue-mimicking phantoms. The simulation results show that a discontinuity in displacement data at the tumor boundary, caused by the surrounding tissue slipping past the tumor, creates a halo of "pseudostrain" across the tumor boundary. Mobile tumors also appear stiffer on elastograms than adhered tumors, to the extent that tumors that have the same Young's modulus as the background may in fact be visible as low-strain regions, or those that are softer than the background may appear to be stiffer than the background. Tumor mobility also causes characteristic strain heterogeneity within the tumor, which exhibits low strain close to the slippery boundary and increasing strain toward the center of the tumor. These results were reproduced in phantom experiments. In addition, phantom experiments demonstrated that when fluid lubrication is present at the boundary, these effects become applied strain-dependent as well as modulus-dependent, in a systematic and characteristic manner. The knowledge generated by this study is expected to aid interpretation of clinical strain elastograms by helping to avoid misinterpretation as well as provide additional diagnostic criteria stated in the paper and stimulate further research into the application of elastography to tumor mobility assessment.

2.
Ultrason Imaging ; 40(3): 158-170, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29353529

RESUMO

The purpose of this study was to establish interobserver reproducibility of Young's modulus (YM) derived from ultrasound shear wave elastography (US-SWE) in the normal prostate and correlate it with multiparametric magnetic resonance imaging (mpMRI) tissue characteristics. Twenty men being screened for prostate cancer underwent same-day US-SWE (10 done by two blinded, newly-trained observers) and mpMRI followed by 12-core biopsy. Bland-Altman plots established limits of agreement for YM. Quantitative data from the peripheral zone (PZ) and the transitional zone (TZ) for YM, apparent diffusion coefficient (ADC, mm2/s from diffusion-weighted MRI), and Ktrans (volume transfer coefficient, min-1), Ve (extravascular-extracellular space, %), Kep (rate constant, /min), and initial area under the gadolinium concentration curve (IAUGC60, mmol/L/s) from dynamic contrast-enhanced MRI were obtained for slice-matched prostate sextants. Interobserver intraclass correlation coefficients were fair to good for individual regions (PZ = 0.57, TZ = 0.65) and for whole gland 0.67, (increasing to 0.81 when corrected for systematic observer bias). In the PZ, there were weak negative correlations between YM and ADC ( p = 0.008), and Ve ( p = 0.01) and a weak positive correlation with Kep ( p = 0.003). No significant intermodality correlations were seen in the TZ. Transrectal prostate US-SWE done without controlling manually applied probe pressure has fair/good interobserver reproducibility in inexperienced observers with potential to improve this to excellent by standardization of probe contact pressure. Within the PZ, increase in tissue stiffness is associated with reduced extracellular water (decreased ADC) and space (reduced Ve).


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Próstata/anatomia & histologia , Adulto , Idoso , Meios de Contraste , Módulo de Elasticidade , Gadolínio , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Próstata/diagnóstico por imagem , Valores de Referência , Reprodutibilidade dos Testes
3.
PLoS One ; 12(1): e0169664, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107368

RESUMO

Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves propagating in a three-dimensional (3D) medium. A needle, embedded in the gel, was excited to vibrate along its long axis and the displacement as a function of time and distance from the needle associated with the resulting shear waves was detected using four M-mode images acquired simultaneously using a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared with the shear-wave speed determined from positional differences of TOA for a single channel over multiple bursts (the absolute TOA method). For homogeneous gels the relative method provided shear-wave speed with acceptable precision and accuracy when judged against the expected linear dependence of shear modulus on gelatine concentration (R2 = 0.95) and ultimate resolution capabilities limited by 184µm inter-channel distance. This overall approach shows promise for its eventual provision as a research tool in cancer cell biology. Further work is required to optimize parameters such as vibration frequency, burst length and amplitude, and to assess the lateral and axial resolutions of this type of device as well as to create 3D elastograms.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Tomografia de Coerência Óptica/métodos , Imagens de Fantasmas
4.
Invest Radiol ; 52(6): 343-348, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28121639

RESUMO

OBJECTIVES: Ultrasound tomography (UST) is an emerging whole-breast 3-dimensional imaging technique that obtains quantitative tomograms of speed of sound of the entire breast. The imaged parameter is the speed of sound which is used as a surrogate measure of density at each voxel and holds promise as a method to evaluate breast density without ionizing radiation. This study evaluated the technique of UST and compared whole-breast volume averaged speed of sound (VASS) with MR percent water content from noncontrast magnetic resonance imaging (MRI). MATERIALS AND METHODS: Forty-three healthy female volunteers (median age, 40 years; range, 29-59 years) underwent bilateral breast UST and MRI using a 2-point Dixon technique. Reproducibility of VASS was evaluated using Bland-Altman analysis. Volume averaged speed of sound and MR percent water were evaluated and compared using Pearson correlation coefficient. RESULTS: The mean ± standard deviation VASS measurement was 1463 ± 29 m s (range, 1434-1542 m s). There was high similarity between right (1464 ± 30 m s) and left (1462 ± 28 m s) breasts (P = 0.113) (intraclass correlation coefficient, 0.98). Mean MR percent water content was 35.7% ± 14.7% (range, 13.2%-75.3%), with small but significant differences between right and left breasts (36.3% ± 14.9% and 35.1% ± 14.7%, respectively; P = 0.004). There was a very strong correlation between VASS and MR percent water density (r = 0.96, P < 0.0001). CONCLUSIONS: Ultrasound tomography holds promise as a reliable and reproducible 3-dimensional technique to provide a surrogate measure of breast density and correlates strongly with MR percent water content.


Assuntos
Densidade da Mama/fisiologia , Mama/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Ultrassonografia Mamária/métodos , Adulto , Feminino , Humanos , Mamografia/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Tomografia/métodos
5.
Ultrasound Med Biol ; 40(2): 300-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24315397

RESUMO

The objective of this study was to assess the in vivo performance of our 2-D locally regularized strain estimation method with 35 breast lesions, mainly cysts, fibroadenomas and carcinomas. The specific 2-D deformation model used, as well as the method's adaptability, led to an algorithm that is able to track tissue motion from radiofrequency ultrasound images acquired in clinical conditions. Particular attention was paid to strain estimation reliability, implying analysis of the mean normalized correlation coefficient maps. For all lesions examined, the results indicated that strain image interpretation, as well as its comparison with B-mode data, should take into account the information provided by the mean normalized correlation coefficient map. Different trends were observed in the tissue response to compression. In particular, carcinomas appeared larger in strain images than in B-mode images, resulting in a mean strain/B-mode lesion area ratio of 2.59 ± 1.36. In comparison, the same ratio was assessed as 1.04 ± 0.26 for fibroadenomas. These results are in agreement with those of previous studies, and confirm the interest of a more thorough consideration of size difference as one parameter discriminating between malignant and benign lesions.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/fisiopatologia , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Palpação/métodos , Ultrassonografia Mamária/métodos , Adulto , Força Compressiva , Simulação por Computador , Módulo de Elasticidade , Feminino , Dureza , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico , Resistência à Tração
6.
Phys Med Biol ; 53(22): 6475-90, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18978441

RESUMO

Experimental and simulation studies were conducted to noninvasively characterize abdominal aneurysms with ultrasound (US) elastography before and after endovascular treatment. Twenty three dogs having bilateral aneurysms surgically created on iliac arteries with venous patches were investigated. In a first set of experiments, the feasibility of elastography to differentiate vascular wall elastic properties between the aneurismal neck (healthy region) and the venous patch (pathological region) was evaluated on six dogs. Lower strain values were found in venous patches (p < 0.001). In a second set of experiments, 17 dogs having endovascular repair (EVAR) by stent graft (SG) insertion were examined three months after SG implantation. Angiography, color Doppler US, examination of macroscopic sections and US elastography were used. The value of elastography was validated with the following end points by considering a solid thrombus of a healed aneurysm as a structure with small deformations and a soft thrombus associated with endoleaks as a more deformable tissue: (1) the correlation between the size of healed organized thrombi estimated by elastography and by macroscopic examinations; (2) the correlation between the strain amplitude measured within vessel wall elastograms and the leak size; and (3) agreement on the presence and size of endoleaks as determined by elastography and by combined reference imaging modalities (angiography + Doppler US). Mean surfaces of solid thrombi estimated with elastography were found correlated with those measured on macroscopic sections (r = 0.88, p < 0.001). Quantitative strain values measured within the vessel wall were poorly linked with the leak size (r = 0.12, p = 0.5). However, the qualitative evaluation of leak size in the aneurismal sac was very good, with a Kappa agreement coefficient of 0.79 between elastography and combined reference imaging modalities. In summary, complementing B-scan and color Doppler, noninvasive US elastography was found to be potentially a relevant tool for aneurismal follow-up after EVAR, provided it allows geometrical and mechanical characterizations of the solid thrombus within the aneurismal sac. This elasticity imaging technique might help detecting potential complications during follows-up subsequent to EVAR.


Assuntos
Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/cirurgia , Vasos Sanguíneos/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Animais , Aneurisma da Aorta Abdominal/sangue , Aneurisma da Aorta Abdominal/complicações , Cães , Seguimentos , Artéria Ilíaca/diagnóstico por imagem , Reprodutibilidade dos Testes , Stents , Trombose/complicações , Trombose/diagnóstico por imagem , Fatores de Tempo , Veias/anatomia & histologia , Veias/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA