Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cells ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534331

RESUMO

High blood levels of low-density lipoprotein (LDL)-cholesterol (LDL-C) are associated with atherosclerosis, mainly by promoting foam cell accumulation in vessels. As cholesterol is an essential component of cell plasma membranes and a regulator of several signaling pathways, LDL-C excess may have wider cardiovascular toxicity. We examined, in untreated hypercholesterolemia (HC) patients, selected regardless of the cause of LDL-C accumulation, and in healthy participants (HP), the expression of the adenosine A2A receptor (A2AR), an anti-inflammatory and vasodilatory protein with cholesterol-dependent modulation, and Flotillin-1, protein marker of cholesterol-enriched plasma membrane domains. Blood cardiovascular risk and inflammatory biomarkers were measured. A2AR and Flotillin-1 expression in peripheral blood mononuclear cells (PBMC) was lower in patients compared to HP and negatively correlated to LDL-C blood levels. No other differences were observed between the two groups apart from transferrin and ferritin concentrations. A2AR and Flotillin-1 proteins levels were positively correlated in the whole study population. Incubation of HP PBMCs with LDL-C caused a similar reduction in A2AR and Flotillin-1 expression. We suggest that LDL-C affects A2AR expression by impacting cholesterol-enriched membrane microdomains. Our results provide new insights into the molecular mechanisms underlying cholesterol toxicity, and may have important clinical implication for assessment and treatment of cardiovascular risk in HC.


Assuntos
Doenças Cardiovasculares , Hipercolesterolemia , Proteínas de Membrana , Humanos , LDL-Colesterol/metabolismo , Receptor A2A de Adenosina/metabolismo , Leucócitos Mononucleares/metabolismo , Adenosina , Fatores de Risco , Colesterol , Proteínas de Transporte , Fatores de Risco de Doenças Cardíacas , Microdomínios da Membrana/metabolismo
3.
Cells ; 12(16)2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37626837

RESUMO

Although very common, the precise mechanisms that explain the symptomatology of neuroendocrine syncope (NES) remain poorly understood. This disease, which can be very incapacitating, manifests itself as a drop in blood pressure secondary to vasodilation and/or extreme slowing of heart rate. As studies continue, the involvement of the adenosinergic system is becoming increasingly evident. Adenosine, which is an ATP derivative, may be involved in a large number of cases. Adenosine acts on G protein-coupled receptors with seven transmembrane domains. A1 and A2A adenosine receptor dysfunction seem to be particularly implicated since the activation leads to severe bradycardia or vasodilation, respectively, two cardinal symptoms of NES. This mini-review aims to shed light on the links between dysfunction of the adenosinergic system and NHS. In particular, signal transduction pathways through the modulation of cAMP production and ion channels in relation to effects on the cardiovascular system are addressed. A better understanding of these mechanisms could guide the pharmacological development of new therapeutic approaches.


Assuntos
Adenosina , Síncope , Animais , Anuros , Pressão Sanguínea , Frequência Cardíaca
4.
Biomedicines ; 10(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36428533

RESUMO

Atrial fibrillation (AF) is the most common arrhythmia in the world. Because the key to developing innovative therapies that limit the onset and the progression of AF is to fully understand the underlying molecular mechanisms of AF, the aim of the present narrative review is to report the most recent advances in the potential role of the adenosinergic system in the pathophysiology of AF. After a comprehensive approach describing adenosinergic system signaling and the mechanisms of the initiation and maintenance of AF, we address the interactions of the adenosinergic system's signaling with AF. Indeed, adenosine release can activate four G-coupled membrane receptors, named A1, A2A, A2B and A3. Activation of the A2A receptors can promote the occurrence of delayed depolarization, while activation of the A1 receptors can shorten the action potential's duration and induce the resting membrane's potential hyperpolarization, which promote pulmonary vein firing, stabilize the AF rotors and allow for functional reentry. Moreover, the A2B receptors have been associated with atrial fibrosis homeostasis. Finally, the adenosinergic system can modulate the autonomous nervous system and is associated with AF risk factors. A question remains regarding adenosine release and the adenosine receptors' activation and whether this would be a cause or consequence of AF.

5.
Biomedicines ; 10(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36359350

RESUMO

Fibromuscular dysplasia (FMD) is a non-inflammatory vascular disease that is characterized by unexplained systemic hypertension occurring in young people, associated with arterial stenosis, aneurysm rupture, intracranial/renal infarction, and stroke. Although the gold standard for the diagnosis remains catheter-angiography, biological markers would be helpful due to the delay from first symptom to diagnosis. Adenosine is an ATP derivative, that may be implicated in FMD pathophysiology. We hypothesized that changes in adenosine blood level (ABL) and production of adenosine receptors may be associated with FMD. Using peripheral blood mononuclear cells, we evaluated A1, A2A, and A2B receptor production by Western blot, in 67 patients (17 men and 50 women, mean (range) age 55 (29−77) years and 40 controls, 10 men and 30 women, mean (range) age 56 (37−70)). ABL was evaluated by liquid chromatography, mass spectrometry. ABL was significantly higher in patients vs. controls, mean (range): 1.7 (0.7−3) µmol/L vs. controls 0.6 (0.4−0.8) µmol/L (+180%) p < 0.001. While A1R and A2AR production did not differ in patients and controls, we found an over-production of A2BR in patients: 1.70 (0.90−2.40; arbitrary units) vs. controls = 1.03 (0.70−1.40), mean + 65% (p < 0.001). A2BR production with a cut off of 1.3 arbitrary units, gives a good sensitivity and specificity for the diagnosis. Production measurement of A2BR on monocytes and ABL could help in the diagnosis, especially in atypical or with poor symptoms.

6.
Biomedicines ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36140160

RESUMO

Climbers and aviators are exposed to severe hypoxia at high altitudes, whereas divers are exposed to hyperoxia at depth. The aim of this study was to report changes in the adenosinergic system induced by exposure to extreme oxygen partial pressures. At high altitudes, the increased adenosine concentration contributes to brain protection against hypoxia through various mechanisms such as stimulation of glycogenolysis for ATP production, reduction in neuronal energy requirements, enhancement in 2,3-bisphosphoglycerate production, and increase in cerebral blood flow secondary to vasodilation of cerebral arteries. In the context of mountain illness, the increased level of A2AR expression leads to glial dysfunction through neuroinflammation and is involved in the pathogenesis of neurological disorders. Nonetheless, a high level of adenosine concentration can protect against high-altitude pulmonary edema via a decrease in pulmonary arterial pressure. The adenosinergic system is also involved in the acclimatization phenomenon induced by prolonged exposure to altitude hypoxia. During hyperoxic exposure, decreased extracellular adenosine and low A2A receptor expression contribute to vasoconstriction. The resulting decrease in cerebral blood flow is considered a preventive phenomenon against cerebral oxygen toxicity through the decrease in oxygen delivery to the brain. With regard to lung oxygen toxicity, hyperoxia leads to an increase in extracellular adenosine, which acts to preserve pulmonary barrier function. Changes in the adenosinergic system induced by exposure to extreme oxygen partial pressures frequently have a benefit in decreasing the risk of adverse effects.

7.
Biomedicines ; 10(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36009396

RESUMO

The evaluation of suspected coronary artery disease (CAD) in the medical community is challenging. Patients with suspected coronary chronic syndrome (CCS) are referred by the medical community to be assessed by specialists for the performance of noninvasive tests that have high rates of false positives and false negatives. While troponins are the gold standard for evaluate myocardial injuries, there is no biomarker to assess myocardial ischemia in patient populations with negative electrocardiography or without an increase in troponin level. A2A adenosine receptors control the coronary blood flow through its vasodilating properties. It has been shown that patients with CAD have a lower A2AR expression on peripheral blood mononuclear cells, suggesting a link between A2AR production and the severity of CAD. Herein, we present a new and innovative method of inhibition ELISA for A2AR in the plasma of patients who permit the evaluation of the amount of soluble A2AR. For this analysis, the total study sample was 54, including 31 patients with CAD with stenosis > 50% and a significant fractional flow reserve (FFR < 0.8) (Group 1) and 23 patients with normal or non-obstructive coronary arteries (stenosis < 50% and nonsignificant FFR > 0.8) (Group 2). The % inhibition (which is linked to the presence of soluble receptors) with the plasma of patients with FFR < 0.8 was significantly lower than that of patients with FFR > 0.8 (median [range]: 68% [20.7−86.9] vs. 83% [67−88.4]; p < 0.001). The ROC curve indicated a good sensitivity/specificity ratio with a cut off of 72.5% and an area under the curve of 0.87. In conclusion, a rapid ELISA to assess soluble A2AR in the plasma shows promise to screen patients suspected of having CAD.

8.
Biomedicines ; 10(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35625864

RESUMO

Adenosine is a ubiquitous nucleoside that is implicated in the occurrence of clinical manifestations of neuro-humoral syncope (NHS). NHS is characterized by a drop in blood pressure due to vasodepression together with cardio inhibition. These manifestations are often preceded by prodromes such as headaches, abdominal pain, feeling of discomfort or sweating. There is evidence that adenosine is implicated in NHS. Adenosine acts via four subtypes of receptors, named A1 (A1R), A2A (A2AR), A2B (A2BR) and A3 (A3R) receptors, with all subtypes belonging to G protein membrane receptors. The main effects of adenosine on the cardiovascular system occurs via the modulation of potassium ion channels (IK Ado, K ATP), voltage-gate calcium channels and via cAMP production inhibition (A1R and A3R) or, conversely, through the increased production of cAMP (A2A/BR) in target cells. However, it turns out that adenosine, via the activation of A1R, leads to bradycardia, sinus arrest or atrioventricular block, while the activation of A2AR leads to vasodilation; these same manifestations are found during episodes of syncope. The use of adenosine receptor antagonists, such as theophylline or caffeine, should be useful in the treatment of some forms of NHS. The aim of this review was to summarize the main data regarding the link between the adenosinergic system and NHS and the possible consequences on NHS treatment by means of adenosine receptor antagonists.

9.
Front Cardiovasc Med ; 8: 761164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805317

RESUMO

Objective: Although atrial fibrillation is a common cardiac arrhythmia in humans, the mechanism that leads to the onset of this condition is poorly elucidated. Adenosine is suspected to be implicated in the trigger of atrial fibrillation (AF) through the activation of its membrane receptors, mainly adenosine receptor (AR) subtypes A1R and A2R. In this study, we compared blood adenosine concentration (BAC), and A1R, A2AR, and A2BR production in right (RA) and left atrium (LA), and on peripheral blood mononuclear cells (PBMCs) in patients with underlying structural heart disease undergoing cardiac surgery with or without peri-operative AF (PeOpAF). Methods: The study group consisted of 39 patients (30 men and 9 women, mean age, range 65 [40-82] years) undergoing cardiac surgery and 20 healthy patients (8 women and 12 men; mean age, range 60 [39-72] years) as controls were included. Among patients, 15 exhibited PeOpAF. Results: Blood adenosine concentration was higher in patients with PeOpAF than others. A2AR and A2BR production was higher in PBMCs of patients compared with controls and was higher in PeOpAF patients than other patients. In LA and RA, the production of A2AR and A2BR was higher in patients with PeOpAF than in other patients. Both A2AR and A2BR production were higher in LA vs. RA. A1R production was unchanged in all situations. Finally, we observed a correlation between A1R, A2AR, and A2BR production evaluated on PBMCs and those evaluated in LA and RA. Conclusions: Perioperative AF was associated with high BAC and high A2AR and A2BR expression, especially in the LA, after cardiac surgery in patients with underlying structural heart disease. Whether these increases the favor in triggering the AF in this patient population needs further investigation.

10.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567540

RESUMO

The influence of hyperhomocysteinemia (HHCy) on cardiovascular disease (CVD) remains unclear. HHCy is associated with inflammation and atherosclerosis, and it is an independent risk factor for CVD, stroke and myocardial infarction. However, homocysteine (HCy)-lowering therapy does not affect the inflammatory state of CVD patients, and it has little influence on cardiovascular risk. The HCy degradation product hydrogen sulfide (H2S) is a cardioprotector. Previous research proposed a positive role of H2S in the cardiovascular system, and we discuss some recent data suggesting that HHCy worsens CVD by increasing the production of H2S, which decreases the expression of adenosine A2A receptors on the surface of immune and cardiovascular cells to cause inflammation and ischemia, respectively.


Assuntos
Doenças Cardiovasculares/etiologia , Homocisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/complicações , Receptor A2A de Adenosina/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos , Hiper-Homocisteinemia/metabolismo
11.
J Cell Mol Med ; 24(16): 8942-8949, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32599677

RESUMO

Hyperhomocysteinemia is associated with coronary artery disease (CAD). The mechanistic aspects of this relationship are unclear. In CAD patients, homocysteine (HCy) concentration correlates with plasma level of adenosine that controls the coronary circulation via the activation of adenosine A2A receptors (A2A R). We addressed in CAD patients the relationship between HCy and A2A R production, and in cellulo the effect of HCy on A2A R function. 46 patients with CAD and 20 control healthy subjects were included. We evaluated A2A R production by peripheral blood mononuclear cells using Western blotting. We studied in cellulo (CEM human T cells) the effect of HCy on A2A R production as well as on basal and stimulated cAMP production following A2A R activation by an agonist-like monoclonal antibody. HCy concentration was higher in CAD patients vs controls (median, range: 16.6 [7-45] vs 8 [5-12] µM, P < 0.001). A2A R production was lower in patients vs controls (1.1[0.62-1.6] vs 1.53[0.7-1.9] arbitrary units, P < 0.001). We observed a negative correlation between HCy concentration and A2A R production (r = -0.43; P < 0.0001), with decreased A2A R production above 25 µM HCy. In cellulo, HCy inhibited A2A R production, as well as basal and stimulated cAMP production. In conclusion, HCy is negatively associated with A2A R production in CAD patients, as well as with A2A R and cAMP production in cellulo. The decrease in A2A R production and function, which is known to hamper coronary blood flow and promote inflammation, may support CAD pathogenesis.


Assuntos
Doença da Artéria Coronariana/metabolismo , Homocisteína/metabolismo , Leucócitos Mononucleares/metabolismo , Receptor A2A de Adenosina/metabolismo , Idoso , Células Cultivadas , Feminino , Humanos , Hiper-Homocisteinemia/metabolismo , Masculino
13.
Am J Physiol Regul Integr Comp Physiol ; 315(3): R509-R520, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741931

RESUMO

Individuals born after intrauterine growth restriction (IUGR) are at increased risk of developing cardiovascular diseases in adulthood, notably hypertension (HTN). Alterations in the vascular system, particularly impaired endothelium-dependent vasodilation, may play an important role in long-term effects of IUGR. Whether such vascular dysfunction precedes HTN has not been fully established in individuals born after IUGR. Moreover, the intimate mechanisms of altered endothelium-dependent vasodilation remain incompletely elucidated. We therefore investigated, using a rat model of IUGR, whether impaired endothelium-dependent relaxation precedes the development of HTN and whether key components of the l-arginine-nitric oxide (NO) pathway are involved in its pathogenesis. Pregnant rats were fed with a control (CTRL, 23% casein) or low-protein diet (LPD, 9% casein) to induce IUGR. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography in 5- and 8-wk-old male offspring. Aortic rings were isolated to investigate relaxation to acetylcholine, NO production, endothelial NO synthase (eNOS) protein content, arginase activity, and superoxide anion production. SBP was not different at 5 wk but significantly increased in 8-wk-old offspring of maternal LPD (LP) versus CTRL offspring. In 5-wk-old LP versus CTRL males, endothelium-dependent vasorelaxation was significantly impaired but restored by preincubation with l-arginine or the arginase inhibitor S-(2-boronoethyl)-l-cysteine; NO production was significantly reduced but restored by l-arginine pretreatment; total eNOS protein, dimer-to-monomer ratio, and arginase activity were significantly increased; superoxide anion production was significantly enhanced but normalized by pretreatment with the NO synthase inhibitor Nω-nitro-l-arginine. In this model, IUGR leads to early-impaired endothelium-dependent vasorelaxation, resulting from arginase upregulation and eNOS uncoupling, which precedes the development of HTN.


Assuntos
Aorta Torácica/enzimologia , Arginase/metabolismo , Endotélio Vascular/enzimologia , Retardo do Crescimento Fetal/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatação , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Aorta Torácica/fisiopatologia , Arginina/metabolismo , Dieta com Restrição de Proteínas , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/fisiopatologia , Hipertensão/enzimologia , Hipertensão/etiologia , Hipertensão/fisiopatologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Óxido Nítrico/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Regulação para Cima
14.
Mol Med ; 22: 530-536, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27463334

RESUMO

During exercise, cardiac oxygen-consumption increases and the resulting low oxygen level in myocardium triggers coronary vasodilation. This response to hypoxia is controlled notably by the vasodilator adenosine and its A2A receptor (A2AR). According to the "spare receptor" pharmacological model, a strong A2AR-mediated response can occur in the context of a large number of receptors remaining unoccupied, activation of only a weak fraction of A2AR (evaluated using KD) resulting in maximal cAMP production (evaluated using EC50), and hence in maximal coronary vasodilation. In coronary artery disease (CAD), myocardial ischemia limits adaptation to exercise, which is commonly detected using the exercise stress test (EST). We hypothesized that spare A2AR are present in CAD patients to correct ischemia. Seventeen patients with angiographically-documented CAD and 17 control subjects were studied. We addressed adenosine-plasma concentration and A2AR-expression at the mononuclear cell-surface, which reflects cardiovascular expression. The presence of spare A2AR was tested using an innovative pharmacological approach based on a homemade monoclonal antibody with agonist properties. EST was positive in 82% of patients, and in none of the controls. Adenosine plasma-concentration increased by 60% at peak exercise in patients only (p<0.01). Most patients (65%), and none of the controls, had spare A2AR (identified when EC50/KD≤0.1) and a low A2AR-expression (mean: -37% vs controls; p<0.01). All patients with spare A2AR had a positive EST whereas the subjects without spare A2AR had a negative EST (p<0.05). Spare A2AR are therefore associated with positive EST in CAD patients and their detection may be used as a diagnostic marker.

16.
J Cell Mol Med ; 20(8): 1411-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27061011

RESUMO

High homocysteine (HCy) levels are associated with lymphocyte-mediated inflammatory responses that are sometimes in turn related to hypoxia. Because adenosine is a potent lymphocyte suppressor produced in hypoxic conditions and shares metabolic pathways with HCy, we addressed the influence of high HCy levels on the hypoxia-induced, adenosine-mediated, alteration of lymphocyte viability. We treated mitogen-stimulated human lymphocytes isolated from healthy individuals and the human lymphoma T-cell line CEM with cobalt chloride (CoCl2 )to reproduce hypoxia. We found that CoCl2 -altered cell viability was dose-dependently reversed using HCy. In turn, the HCy effect was inhibited using DL-propargylglycine, a specific inhibitor of the hydrogen sulphide (H2 S)-synthesizing enzyme cystathionine-γ-lyase involved in HCy catabolism. We then addressed the intracellular metabolic pathway of adenosine and HCy, and the role of the adenosine A2A receptor (A2 A R). We observed that: (i) hypoxic conditions lowered the intracellular concentration of HCy by increasing adenosine production, which resulted in high A2 A R expression and 3', 5'-cyclic adenosine monophosphate production; (ii) increasing intracellular HCy concentration reversed the hypoxia-induced adenosinergic signalling despite high adenosine concentration by promoting both S-adenosylhomocysteine and H2 S production; (iii) DL-propargylglycine that inhibits H2 S production abolished the HCy effect. Together, these data suggest that high HCy levels prevent, via H2 S production and the resulting down-regulation of A2 A R expression, the hypoxia-induced adenosinergic alteration of lymphocyte viability. We point out the relevance of these mechanisms in the pathophysiology of cardiovascular diseases.


Assuntos
Cobalto/toxicidade , Homocisteína/farmacologia , Sulfeto de Hidrogênio/farmacologia , Linfócitos/citologia , Adenosina/metabolismo , Adulto , Alcinos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Pessoa de Meia-Idade , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos
18.
Medicine (Baltimore) ; 95(8): e2876, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26937921

RESUMO

Head-up tilt test is useful for exploring neurally mediated syncope. Adenosine is an ATP derivative implicated in cardiovascular disturbances that occur during head-up tilt test. The aim of the present study was to investigate the impact of hyperoxia on adenosine plasma level and on hemodynamic changes induced by head-up tilt testing.Seventeen healthy male volunteers (mean age 35 ±â€Š11 years) were included in the study. The experiment consisted of 2 head-up tilt tests, 1 session with subjects breathing, through a mask, medical air (FiO2 = 21%) and 1 session with administration of pure oxygen (FiO2 = 100%) in double-blind manner. Investigations included continuous monitoring of hemodynamic data and measurement of plasma adenosine levels.No presyncope or syncope was found in 15 of the 17 volunteers. In these subjects, a slight decrease in systolic blood pressure was recorded during orthostatic stress performed under medical air exposure. In contrast, hyperoxia led to increased systolic blood pressure during orthostatic stress when compared with medical air. Furthermore, mean adenosine plasma levels decreased during hyperoxic exposure before (0.31 ±â€Š0.08 µM) and during head-up tilt test (0.33 ±â€Š0.09 µM) when compared with baseline (0.6 ±â€Š0.1 µM). Adenosine plasma level was unchanged during medical air exposure at rest (0.6 ±â€Š0.1 µM), and slightly decreased during orthostatic stress. In 2 volunteers, the head-up tilt test induced a loss of consciousness when breathing air. In these subjects, adenosine plasma level increased during orthostatic stress. In contrast, during hyperoxic exposure, the head-up tilt test did not induce presyncope or syncope. In these 2 volunteers, biological study demonstrated a decrease in adenosine plasma level at both baseline and during orthostatic stress for hyperoxic exposure compared with medical air.These results suggest that hyperoxia was able to increase blood pressure during head-up tilt test via a decrease in plasma adenosine concentration. Our results also suggest that adenosine receptor antagonists are worth trying in neurocardiogenic syncope.


Assuntos
Hemodinâmica/fisiologia , Hiperóxia , Síncope/fisiopatologia , Adenosina/sangue , Adulto , Biomarcadores/sangue , Pressão Sanguínea/fisiologia , Método Duplo-Cego , Voluntários Saudáveis , Frequência Cardíaca/fisiologia , Humanos , Masculino , Teste da Mesa Inclinada
19.
J Appl Physiol (1985) ; 119(2): 140-7, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25997945

RESUMO

The nucleoside adenosine acts on the nervous and cardiovascular systems via the A2A receptor (A2AR). In response to oxygen level in tissues, adenosine plasma concentration is regulated in particular via its synthesis by CD73 and via its degradation by adenosine deaminase (ADA). The cell-surface endopeptidase CD26 controls the concentration of vasoactive and antioxidant peptides and hence regulates the oxygen supply to tissues and oxidative stress response. Although overexpression of adenosine, CD73, ADA, A2AR, and CD26 in response to hypoxia is well documented, the effects of hyperoxic and hyperbaric conditions on these elements deserve further consideration. Rats and a murine Chem-3 cell line that expresses A2AR were exposed to 0.21 bar O2, 0.79 bar N2 (terrestrial conditions; normoxia); 1 bar O2 (hyperoxia); 2 bar O2 (hyperbaric hyperoxia); 0.21 bar O2, 1.79 bar N2 (hyperbaria). Adenosine plasma concentration, CD73, ADA, A2AR expression, and CD26 activity were addressed in vivo, and cAMP production was addressed in cellulo. For in vivo conditions, 1) hyperoxia decreased adenosine plasma level and T cell surface CD26 activity, whereas it increased CD73 expression and ADA level; 2) hyperbaric hyperoxia tended to amplify the trend; and 3) hyperbaria alone lacked significant influence on these parameters. In the brain and in cellulo, 1) hyperoxia decreased A2AR expression; 2) hyperbaric hyperoxia amplified the trend; and 3) hyperbaria alone exhibited the strongest effect. We found a similar pattern regarding both A2AR mRNA synthesis in the brain and cAMP production in Chem-3 cells. Thus a high oxygen level tended to downregulate the adenosinergic pathway and CD26 activity. Hyperbaria alone affected only A2AR expression and cAMP production. We discuss how such mechanisms triggered by hyperoxygenation can limit, through vasoconstriction, the oxygen supply to tissues and the production of reactive oxygen species.


Assuntos
Adenosina/genética , Dipeptidil Peptidase 4/genética , Hiperóxia/genética , Transdução de Sinais/genética , 5'-Nucleotidase/genética , Adenosina Desaminase/genética , Animais , Linhagem Celular , AMP Cíclico/genética , Regulação para Baixo/genética , Masculino , Camundongos , Estresse Oxidativo/genética , Oxigênio/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor A2A de Adenosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA