Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37233489

RESUMO

Oligosaccharides derived from λ-carrageenan (λ-COs) are gaining interest in the cancer field. They have been recently reported to regulate heparanase (HPSE) activity, a protumor enzyme involved in cancer cell migration and invasion, making them very promising molecules for new therapeutic applications. However, one of the specific features of commercial λ-carrageenan (λ-CAR) is that they are heterogeneous mixtures of different CAR families, and are named according to the thickening-purpose final-product viscosity which does not reflect the real composition. Consequently, this can limit their use in a clinical applications. To address this issue, six commercial λ-CARs were compared and differences in their physiochemical properties were analyzed and shown. Then, a H2O2-assisted depolymerization was applied to each commercial source, and number- and weight-averaged molar masses (Mn and Mw) and sulfation degree (DS) of the λ-COs produced over time were determined. By adjusting the depolymerization time for each product, almost comparable λ-CO formulations could be obtained in terms of molar masses and DS, which ranged within previously reported values suitable for antitumor properties. However, when the anti-HPSE activity of these new λ-COs was screened, small changes that could not be attributed only to their small length or DS changes between them were found, suggesting a role of other features, such as differences in the initial mixture composition. Further structural MS and NMR analysis revealed qualitative and semi-quantitative differences between the molecular species, especially in the proportion of the anti-HPSE λ-type, other CARs types and adjuvants, and it also showed that H2O2-based hydrolysis induced sugar degradation. Finally, when the effects of λ-COs were assessed in an in vitro migration cell-based model, they seemed more related to the proportion of other CAR types in the formulation than to their λ-type-dependent anti-HPSE activity.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Carragenina/farmacologia , Carragenina/química , Peróxido de Hidrogênio/farmacologia , Oligossacarídeos/farmacologia , Oligossacarídeos/química
2.
Mar Drugs ; 19(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677445

RESUMO

Sugar-based molecules such as heparins or natural heparan sulfate polysaccharides have been developed and widely studied for controlling heparanase (HPSE) enzymatic activity, a key player in extracellular matrix remodelling during cancer pathogenesis. However, non-enzymatic functions of HPSE have also been described in tumour mechanisms. Given their versatile properties, we hypothesized that sugar-based inhibitors may interfere with enzymatic but also non-enzymatic HPSE activities. In this work, we assessed the effects of an original marine λ-carrageenan derived oligosaccharide (λ-CO) we previously described, along with those of its native counterpart and heparins, on cell viability, proliferation, migration, and invasion of MDA-MB-231 breast cancer cells but also of sh-MDA-MB-231 cells, in which the expression of HPSE was selectively downregulated. We observed no cytotoxic and no anti-proliferative effects of our compounds but surprisingly λ-CO was the most efficient to reduce cell migration and invasion compared with heparins, and in a HPSE-dependent manner. We provided evidence that λ-CO tightly controlled a HPSE/MMP-14/MMP-2 axis, leading to reduced MMP-2 activity. Altogether, this study highlights λ-CO as a potent HPSE "modulator" capable of reducing not only the enzymatic activity of HPSE but also the functions controlled by the HPSE levels.


Assuntos
Antineoplásicos/farmacologia , Carragenina/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Glucuronidase/metabolismo , Rodófitas , Animais , Antineoplásicos/química , Organismos Aquáticos , Neoplasias da Mama , Carragenina/química , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo
3.
Phytother Res ; 35(9): 4957-4970, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33864293

RESUMO

Limonene (LIM) is a monoterpene, which is abundant in essential oils of Citrus fruits peels (Rutaceae). More recently, LIM, as a potential natural anticancer compound, has attracted major attention and exerted a chemopreventive activity, stimulating the detoxification of carcinogenic compounds and limiting tumor growth and angiogenesis in various cancer models. Twenty-six (26) articles were selected based on previously established criteria. Anticancer activity of LIM was related to the inhibition of tumor initiation, growth, and angiogenesis and the induction of cancer cells apoptosis. LIM was able to increase Bax expression, release cytochrome c, and activate the caspase pathway. In addition, LIM increased the expression of p53 and decreased the activity of Ras/Raf/MEK/ERK and PI3K/Akt pathways. LIM also decreased the expression of VEGF and increased the activities of the Man-6-P / IGF2R and TGF-ßIIR receptors. These results highlight LIM as an abundant natural molecule with low toxicity and pleiotropic pharmacological activity in cancer cells, targeting various cell-signaling pathways critically involved in the initiation, growth, and chemoresistance of cancer cells.


Assuntos
Limoneno/farmacologia , Neoplasias , Transdução de Sinais/efeitos dos fármacos , Apoptose , Humanos , Neoplasias/tratamento farmacológico
4.
Nanoscale ; 13(2): 842-861, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33351869

RESUMO

The positive contrast of extremely small iron oxide nanoparticles (ESIONP) in magnetic resonance imaging (MRI) rejuvenates this class of metal nanoparticles (NP).Yet, the current synthesis often lacks the possibility of adjusting the core size (while it is a key element for ESIONP-based MRI contrast behaviour), and also involved multiple complex steps before obtaining a ready-to-use probe for medical applications. In this study, we faced these challenges by applying heparin oligosaccharides (HO) of different lengths as coatings for the preparation of HEP-ESIONP with a one-pot microwave method. We demonstrated that the HO length could control the core size during the synthesis to achieve optimal positive MRI contrast, and that HEP-ESIONP were endowed directly with anticoagulant properties and/or a specific antitumor activity, according to the HO used. Relevantly, positron emission tomography (PET)-based in vivo biodistribution study conducted with 68Ga core-doped HEP-ESIONP analogues revealed significant changes in the probe behaviours, the shortening of HO promoting a shift from hepatic to renal clearance. The different conformations of HO coatings and a thorough in vitro characterisation of the probes' protein coronas provided insight into this crucial impact of HO length on opsonization-mediated immune response and elimination. Overall, we were able to identify a precise HO length to get an ESIONP probe showing prolonged vascular lifetime and moderate accumulation in a tumor xenograft, balanced with a low uptake by non-specific organs and favourable urinary clearance. This probe met all prerequisites for advanced theranostic medical applications with a dual MRI/PET hot spot capability and potential antitumor activity.


Assuntos
Compostos Férricos , Nanopartículas , Heparina , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Medicina de Precisão , Nanomedicina Teranóstica , Distribuição Tecidual
5.
Mar Drugs ; 17(3)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818840

RESUMO

In tumor development, the degradation of heparan sulfate (HS) by heparanase (HPSE) is associated with cell-surface and extracellular matrix remodeling as well as the release of HS-bound signaling molecules, allowing cancer cell migration, invasion and angiogenesis. Because of their structural similarity with HS, sulfated polysaccharides are considered a promising source of molecules to control these activities. In this study, we used a depolymerisation method for producing λ-carrageenan oligosaccharides (λ-CO), with progressive desulfation over time. These were then used to investigate the influence of polymeric chain length and degree of sulfation (DS) on their anti-HPSE activity. The effects of these two features on λ-CO anticoagulant properties were also investigated to eliminate a potential limitation on the use of a candidate λ-CO as a chemotherapeutic agent. HPSE inhibition was mainly related to the DS of λ-CO, however this correlation was not complete. On the other hand, both chain length and DS modulated λ-CO activity for factor Xa and thrombin IIa inhibition, two enzymes that are involved in the coagulation cascade, and different mechanisms of inhibition were observed. A λ-carrageenan oligosaccharide of 5.9 KDa was identified as a suitable anticancer candidate because it displayed one of the lowest anticoagulant properties among the λ-CO produced, while showing a remarkable inhibitory effect on MDA-MB-231 breast cancer cell migration.


Assuntos
Anticoagulantes/farmacologia , Antineoplásicos/farmacologia , Carragenina/farmacologia , Glucuronidase/antagonistas & inibidores , Oligossacarídeos/farmacologia , Anticoagulantes/química , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carragenina/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios Enzimáticos , Feminino , Glucuronidase/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Oligossacarídeos/química
6.
J Immunother Cancer ; 7(1): 29, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717773

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) treatment is currently restricted to chemotherapy. Hence, tumor-specific molecular targets and/or alternative therapeutic strategies for TNBC are urgently needed. Immunotherapy is emerging as an exciting treatment option for TNBC patients. The aspartic protease cathepsin D (cath-D), a marker of poor prognosis in breast cancer (BC), is overproduced and hypersecreted by human BC cells. This study explores whether cath-D is a tumor cell-associated extracellular biomarker and a potent target for antibody-based therapy in TNBC. METHODS: Cath-D prognostic value and localization was evaluated by transcriptomics, proteomics and immunohistochemistry in TNBC. First-in-class anti-cath-D human scFv fragments binding to both human and mouse cath-D were generated using phage display and cloned in the human IgG1 λ format (F1 and E2). Anti-cath-D antibody biodistribution, antitumor efficacy and in vivo underlying mechanisms were investigated in TNBC MDA-MB-231 tumor xenografts in nude mice. Antitumor effect was further assessed in TNBC patient-derived xenografts (PDXs). RESULTS: High CTSD mRNA levels correlated with shorter recurrence-free survival in TNBC, and extracellular cath-D was detected in the tumor microenvironment, but not in matched normal breast stroma. Anti-cath-D F1 and E2 antibodies accumulated in TNBC MDA-MB-231 tumor xenografts, inhibited tumor growth and improved mice survival without apparent toxicity. The Fc function of F1, the best antibody candidate, was essential for maximal tumor inhibition in the MDA-MB-231 model. Mechanistically, F1 antitumor response was triggered through natural killer cell activation via IL-15 upregulation, associated with granzyme B and perforin production, and the release of antitumor IFNγ cytokine. The F1 antibody also prevented the tumor recruitment of immunosuppressive tumor-associated macrophages M2 and myeloid-derived suppressor cells, a specific effect associated with a less immunosuppressive tumor microenvironment highlighted by TGFß decrease. Finally, the antibody F1 inhibited tumor growth of two TNBC PDXs, isolated from patients resistant or not to neo-adjuvant chemotherapy. CONCLUSION: Cath-D is a tumor-specific extracellular target in TNBC suitable for antibody-based therapy. Immunomodulatory antibody-based strategy against cath-D is a promising immunotherapy to treat patients with TNBC.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Catepsina D/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacocinética , Antineoplásicos Imunológicos/farmacocinética , Catepsina D/genética , Catepsina D/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia , Camundongos Nus , RNA Mensageiro/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Biomacromolecules ; 18(10): 3156-3167, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28850787

RESUMO

Unfractionated heparin (UFH) and low-molecular-weight heparins (LMWH) are well-known for their anticoagulant properties. There is also currently a growing interest in using LMWH in targeted cancer therapy. In particular, several types inhibit heparanase, a key enzyme overexpressed in the tumor microenvironment that promotes angiogenesis progression and metastasis spreading. Here, we propose iron oxide nanoparticles (HEP-IONP) coated with different heparins of distinct anticoagulant/anti-heparanase activity ratios and suitable for positive contrast in magnetic resonance imaging. As a proof of concept, magnetic resonance angiography (MRA) was conducted in mice up to 3 h after intravenous administration. This new IONP-based positive contrast appropriate for clinic together with the long vascular circulating times can enable innovative theranostic applications if combined with the various bioactivities of the heparins. Indeed, we showed, using advanced in vitro tests, how HEP-IONP anticoagulant or anti-heparanase activities were maintained depending on the heparin species used for the coating. Overall, the study allowed presenting an IONP coated with a commercial LMWH (Lovenox) suggested as a theranostic translational probe for MRA diagnostic and treatment of thrombosis, and an antitumor IONP coated with a specific depolymerized heparin to be used in targeted therapy and diagnostic modalities.


Assuntos
Compostos Férricos/química , Heparina/química , Angiografia por Ressonância Magnética/métodos , Nanopartículas Metálicas/química , Animais , Meios de Contraste/química , Feminino , Células HEK293 , Humanos , Nanopartículas Metálicas/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL
8.
Mar Drugs ; 15(5)2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28486399

RESUMO

Heparanase is overexpressed by tumor cells and degrades the extracellular matrix proteoglycans through cleavage of heparan sulfates (HS), allowing pro-angiogenic factor release and thus playing a key role in tumor angiogenesis and metastasis. Here we propose new HS analogs as potent heparanase inhibitors: Heparin as a positive control, Dextran Sulfate, λ-Carrageenan, and modified forms of them obtained by depolymerization associated to glycol splitting (RD-GS). After heparanase activity assessment, 11 kDa RD-GS-λ-Carrageenan emerged as the most effective heparanase inhibitor with an IC50 of 7.32 ng/mL compared to 10.7 ng/mL for the 16 kDa unfractionated heparin. The fractionated polysaccharides were then tested in a heparanase-rich medium-based in vitro model, mimicking tumor microenvironment, to determine their effect on microvascular endothelial cells (HSkMEC) angiogenesis. As a preliminary study, we identified that under hypoxic and nutrient poor conditions, MCF-7 cancer cells released much more mature heparanase in their supernatant than in normal conditions. Then a MatrigelTM assay using HSkMEC cultured under hypoxic conditions in the presence (or not) of this heparanase-rich supernatant was realized. Adding heparanase-rich media strongly enhanced angiogenic network formation with a production of twice more pseudo-vessels than with the control. When sulfated polysaccharides were tested in this angiogenesis assay, RD-GS-λ-Carrageenan was identified as a promising anti-angiogenic agent.


Assuntos
Inibidores da Angiogênese/farmacologia , Carragenina/farmacologia , Células Endoteliais/efeitos dos fármacos , Glucuronidase/antagonistas & inibidores , Neovascularização Patológica/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral , Matriz Extracelular/efeitos dos fármacos , Heparina/farmacologia , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos
9.
Carbohydr Polym ; 166: 156-165, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28385219

RESUMO

Strongly associated with tumor angiogenesis and metastasis, the enzyme heparanase is an endo-ß-d-glucuronidase which is overexpressed in the tumor microenvironment. Its inhibition could be one of the most promising anti-angiogenic approaches to date. Although heparin is known as a good heparanase inhibitor, it also possesses major anticoagulant properties that may be incompatible with its use as an anti-angiogenic agent, hence the considerable interest for other sources of sulfated polysaccharides. Recent investigations point to λ-carrageenans, highly sulfated galactans with a tremendous potential that are found in red algae. This study describes the production of low-molecular-weight (LMW) heparins and λ-carrageenans, using a combination of glycol splitting and ultrasonically-assisted radical hydrolysis using hydrogen-peroxide. The structural characteristics, as well as the anticoagulant and antiheparanase activities of the resulting products were assessed. The best candidate was a LMW glycol-split λ-carrageenan that displayed major anti-heparanase properties, with an IC50 of 7.32ng/mL and a close-to-zero anticoagulant activity.


Assuntos
Carragenina/química , Glucuronidase/antagonistas & inibidores , Heparina/química , Glicóis
10.
Biochimie ; 121: 123-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26582416

RESUMO

The microenvironment that surrounds tumor cells is characterized by hypoxic conditions and extracellular acidity. These hostile conditions induce crucial changes in cell behavior and can promote the secretion of many soluble factors such as growth factors, cytokines and enzymes. The lysosomal aspartyl-endopeptidase cathepsin D (CD) is a marker of poor prognosis in breast cancer and is associated with a metastatic risk. In this study, the transport of CD was investigated in a model of breast cancer cells line (MCF-7) cultivated under hypoxia and acidification of media. CD secretion was assessed using Western blot analysis and protease activity was measured in conditioned culture media. We demonstrate that cultured MCF-7 cells secrete an active 52 kDa pCD precursor and report that under hypoxia there was an increased amount of pCD secreted. More surprisingly, extracellular acidification (pH 6 and 5.6) induced the secretion of the fully-mature and active (34 kDa + 14 kDa) double chain CD. Our findings reflect the fact that chemical anomalies influence the secretion path of CD in a breast cancer cell model, resulting in altered trafficking of the mature form. This important result may provide new arguments in favor of the role of extracellular CD in the degradation of the matrix proteins that constitute the breast tumor microenvironment.


Assuntos
Neoplasias da Mama/metabolismo , Catepsina D/metabolismo , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Movimento Celular/fisiologia , Feminino , Humanos , Cinética , Células MCF-7
11.
Carbohydr Polym ; 135: 316-23, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26453883

RESUMO

Heparanase is an endo-ß-D-glucuronidase that plays an important role in cancer progression, in particular during tumor angiogenesis and metastasis. Inhibiting this enzyme is considered as one of the most promising approaches in cancer therapy. Heparin is a complex glycoaminoglycan known as a strong inhibitor of heparanase. It is primarily used in clinical practice for its anticoagulant activities, which may not be compatible with its use as anti-angiogenic agent. In this study, we described the production of ultra-low-molecular-weight heparins (ULMWH) by a physicochemical method that consists in a hydrogen peroxide-catalyzed radical hydrolysis assisted by ultrasonic waves. We assessed the structural characteristics, anticoagulant and anti-heparanase activities of the obtained heparin derivatives and compared them with three commercial low-molecular-weight heparins (LMWH), glycol-split non-anticoagulant heparins and heparins produced by enzymatic methods. ULMWH generated by the physicochemical method were characterized by high anti-heparanase and moderate anticoagulant activities. These heparin derivatives might be potential candidates for cancer therapy when a compromise is needed between anti-heparanase and anticoagulant activities.


Assuntos
Anticoagulantes/química , Glucuronidase/química , Heparina/química , Catálise , Peróxido de Hidrogênio/química , Hidrólise , Peso Molecular , Ondas Ultrassônicas
12.
J Invertebr Pathol ; 123: 38-48, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24815818

RESUMO

Nine dominant bacterial isolates were obtained from different batches of Crassostrea gigas spat experiencing high mortality rates in a French experimental hatchery/nursery in 2007. Using phenotypic analysis combined with multilocus sequence analysis, the isolates were shown to be genetically close to the Vibrio tubiashii type strain. Based on (1) analyses of the recA gene sequences; (2) the results of DNA-DNA hybridization assays between 07/118 T2 (LMG 27884=CECT 8426), which is a representative strain, and the V. tubiashii type strain (69%); and (3) phenotypic traits, the bacteria were classified in a group close to American V. tubiashii strain. Its virulence (70% of mortalities) and the toxicity of the extracellular products of 07/118 T2 was demonstrated (41% of mortalities). Moreover, a QPCR diagnostic tool targeting the gyrB gene was developed to investigate the epidemiological significance of V. tubiashii in French oyster mortality outbreaks recorded by the national surveillance network. Of the 21 batches originating from hatcheries, only two were positive, whereas V. tubiashii DNA could not be detected in any of the batches of moribund animals collected in field/outdoor facilities. These results demonstrate the existence of a group of virulent V. tubiashii in France that episodically infect C. gigas.


Assuntos
Crassostrea/microbiologia , Vibrio/genética , Vibrio/isolamento & purificação , Animais , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Vibrio/patogenicidade
14.
Clin Chim Acta ; 337(1-2): 59-67, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14568181

RESUMO

BACKGROUND: Increased expression of cathepsin D (CD) and B (CB) is found in some cancers and correlates with the development of clinical metastases. It was suggested that these cathepsins could be used as prognostic markers, especially CD in breast cancer. Because serum level of Hemorphin-7 (H7) peptides could reflect CD activity, we have hypothesised that it could be used as a prognostic factor in breast cancer. METHODS: To verify this hypothesis, H7 serum levels from 62 breast cancer patients and 25 healthy controls were measured by ELISA. RESULTS: The mean serum concentration of H7 was 2.27+/-0.63 mumol/l in breast cancer patients in comparison with 4.09+/-1.05 mumol/l in controls (p=0.002). This reduced level of H7 in breast cancer could be due to the over-expression of CB, which exhibits strong interaction with H7 in vitro, with a ratio K(cat)/K(m) estimated at 18000 s(-1) M(-1). CONCLUSIONS: Because H7 serum levels did not correlate with other parameters including age, CA15-3 and ACE markers, it seems that they might be used as independent markers for the diagnosis of breast cancer.


Assuntos
Neoplasias da Mama/sangue , Fragmentos de Peptídeos/sangue , Animais , Neoplasias da Mama/patologia , Antígeno Carcinoembrionário/sangue , Catepsina B/metabolismo , Catepsina D/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Feminino , Hemoglobinas/análise , Hemoglobinas/química , Hemoglobinas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Mucina-1/sangue , Metástase Neoplásica , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Análise de Regressão , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA