Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887383

RESUMO

Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived 'danger' factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC's immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.


Assuntos
Células-Tronco Mesenquimais , Vírus , Diferenciação Celular , Condrócitos/metabolismo , Cicatriz/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo
2.
J Clin Med ; 9(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260801

RESUMO

Humoral immunity is critically important to control COVID-19. Long-term antibody responses remain to be fully characterized in hospitalized patients who have a high risk of death. We compared specific Immunoglobulin responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between two groups, intensive care unit (ICU) and non-ICU hospitalized patients over several weeks. Plasma specific IgG, IgM, and IgA levels were assessed using a commercial ELISA and compared to an in-house cell-based ELISA. Among the patients analyzed (mean (SD) of age, 64.4 (15.9) years, 19.2% female), 12 (46.2%) were hospitalized in ICU. IgG levels increased in non-ICU cases from the second to the eighth week after symptom onset. By contrast, IgG response was blunted in ICU patients over the same period. ICU patients with hematological malignancies had very weak or even undetectable IgG levels. While both groups had comparable levels of specific IgM antibodies, we found much lower levels of specific IgA in ICU versus non-ICU patients. In conclusion, COVID-19 ICU patients may be at risk of reinfection as their specific IgG response is declining in a matter of weeks. Antibody neutralizing assays and studies on specific cellular immunity will have to be performed.

3.
Viruses ; 12(11)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167511

RESUMO

Mosquito-borne Zika virus (ZIKV) causes a severe congenital syndrome and neurological disorders in humans. With the aim to develop a live-attenuated ZIKV strain, we generated a chimeric viral clone ZIKALIVax with African MR766-NIID strain as backbone and the envelope E protein of epidemic Brazilian BeH810915 strain. The MR766-NIID residues E-T152/I156/Y158 were introduced into BeH810915 E protein leading to a nonglycosylated ZIKALIVax. Recently, we reported that the residues E-152/156/158 that are part of ZIKV glycan loop (GL) region might have an impact on the availability of neutralizing antibody epitopes on ZIKV surface. In the present study, we evaluated the antigenic reactivity of a synthetic 20-mer peptide representing the ZIKALIVax GL region. The GL-related peptide was effective for the detection of GL-reactive antibody in mouse anti-ZIKALIVax immune serum. We showed that the residue E-158 influences the antigenic reactivity of GL-related peptide. The ZIKALIVax peptide was effective in generating mouse antibodies with reactivity against a recombinant E domain I that encompasses the GL region. The GL peptide-reactive antibodies revealed that antigenic reactivity of E-domain I may be impacted by both residues E-152 and E-156. In conclusion, we proposed a role for the residues E-152/156/158 as key antigenic determinants of ZIKV glycan loop region.


Assuntos
Anticorpos Antivirais/sangue , Epitopos/imunologia , Peptídeos/imunologia , Polissacarídeos/imunologia , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Zika virus/genética , Infecção por Zika virus/imunologia
4.
Biochimie ; 175: 99-105, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464166

RESUMO

Flaviviruses replicate in membranous factories associated with the endoplasmic reticulum (ER). Significant levels of flavivirus polyprotein integration contribute to ER stress and the host cell may exhibit an Unfolded Protein Response (UPR) to this protein accumulation, stimulating appropriate cellular responses such as adaptation, autophagy or cell death. These different stress responses support other antiviral strategies initiated by infected cells and can help to overcome viral infection. In epithelial A549 cells, a model currently used to study the flavivirus infection cycle and the host cell responses, all three pathways leading to UPR are activated during infection by Dengue virus (DENV), Yellow Fever virus (YFV) or West Nile virus (WNV). In the present study, we investigated the capacity of ZIKA virus (ZIKV) to induce ER stress in A549 cells. We observed that the cells respond to ZIKV infection by implementing an UPR through activation of the IRE1 and PERK pathway without activation of the ATF6 branch. By modulating the ER stress response, we found that UPR inducers significantly inhibit ZIKV replication. Interestingly, our findings provide evidence that ZIKV could manipulate the UPR to escape this host cell defence system by downregulating GRP78/BiP expression. This subversion of GRP78 expression could lead to unresolved and persistent ER stress which can be a benefit for virus growth.


Assuntos
Regulação da Expressão Gênica , Proteínas de Choque Térmico/biossíntese , Resposta a Proteínas não Dobradas , Replicação Viral , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Células A549 , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Humanos , Infecção por Zika virus/genética , Infecção por Zika virus/patologia
5.
Cells ; 8(11)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731738

RESUMO

Emerging infections of mosquito-borne Zika virus (ZIKV) pose an increasing threat to human health, as documented over the recent years in South Pacific islands and the Americas in recent years. To better understand molecular mechanisms underlying the increase in human cases with severe pathologies, we recently demonstrated the functional roles of structural proteins capsid (C), pre-membrane (prM), and envelop (E) of ZIKV epidemic strains with the initiation of viral infection in human cells. Specifically, we found that the C-prM region contributes to permissiveness of human host cells to ZIKV infection and ZIKV-induced cytopathic effects, whereas the E protein is associated with viral attachment and early infection. In the present study, we further characterize ZIKV E proteins by investigating the roles of residues isoleucine 152 (Ile152), threonine 156 (Thr156), and histidine 158 (His158) (i.e., the E-152/156/158 residues), which surround a unique N-glycosylation site (E-154), in permissiveness of human host cells to epidemic ZIKV infection. For comparison purpose, we generated mutant molecular clones of epidemic BeH819015 (BR15) and historical MR766-NIID (MR766) strains that carry each other's E-152/156/158 residues, respectively. We observed that the BR15 mutant containing the E-152/156/158 residues from MR766 was less infectious in A549-Dual™ cells than parental virus. In contrast, the MR766 mutant containing E-152/156/158 residues from BR15 displayed increased infectivity. The observed differences in infectivity were, however, not correlated with changes in viral binding onto host-cells or cellular responses to viral infection. Instead, the E-152/156/158 residues from BR15 were associated with an increased efficiency of viral membrane fusion inside infected cells due to conformational changes of E protein that enhance exposure of the fusion loop. Our data highlight an important contribution of E-152/156/158 residues to the early steps of ZIKV infection in human cells.


Assuntos
Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Infecção por Zika virus/virologia , Zika virus/patogenicidade , Células A549 , Motivos de Aminoácidos , Animais , Chlorocebus aethiops , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Mutação , Células Vero , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Zika virus/genética , Zika virus/metabolismo
6.
Cells ; 8(11)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671831

RESUMO

Zika virus (ZIKV) is an emerging human mosquito-transmitted pathogen of global concern, known to be associated with complications such as congenital defects and neurological disorders in adults. ZIKV infection is associated with induction of cell death. However, previous studies suggest that the virally induced apoptosis occurs at a slower rate compared to the course of viral production. In this present study, we investigated the capacity of ZIKV to delay host cell apoptosis. We provide evidence that ZIKV has the ability to interfere with apoptosis whether it is intrinsically or extrinsically induced. In cells expressing viral replicon-type constructions, we show that this control is achieved through replication. Finally, our work highlights an important role for anti-apoptotic Bcl-2 family protein in the ability of ZIKV to control apoptotic pathways, avoiding premature cell death and thereby promoting virus replication in the host-cell.


Assuntos
Morte Celular/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Infecção por Zika virus/patologia , Zika virus/fisiologia , Células A549 , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/fisiologia , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Células Vero , Replicação Viral/fisiologia , Infecção por Zika virus/genética
7.
Biochem Biophys Rep ; 8: 151-156, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28955951

RESUMO

Arthritogenic alphaviruses are emerging arthropod-borne viruses that occasionally cause sporadic to global outbreaks all over the world. Many environmental factors including xenobiotics have been identified as capable of influencing the spread, the susceptibility and the outcome of viral infection. Among them cadmium is a toxic non-essential heavy metal and a prevalent environmental contaminant. In the present study we evaluated the effect of cadmium exposure on alphavirus infection in vitro. We infected Human Embryonic Kidney (HEK) 293 cells in the presence of cadmium chloride (CdCl2) with Sindbis virus. Cell viability, apoptosis and viral growth were then examined. Our data show that effective doses of cadmium decreased the virus mediated-cell death by inhibition of apoptosis. Moreover, virus growth in HEK 293 cells was also reduced by CdCl2 treatment. Altogether our results demonstrate that cadmium triggers a protective response which renders HEK 293 cells resistant against Sindbis virus infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA