Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39334741

RESUMO

Repurposing saffron (Crocus sativus) waste presents a sustainable strategy for generating high-value products within the bioeconomy framework. Typically, flower components are discarded after stigma harvest, resulting in significant waste-350 kg of tepals per kilogram of stigmas. This research employed a comprehensive approach, integrating bioactivity studies (in vitro and in silico) with Life Cycle Assessment (LCA) evaluations, to extract and assess bioactive compounds from C. sativus tepals sourced in Tuscany, Italy. Phytochemical characterization using UPLC-MS/MS revealed a high abundance and variety of flavonoids in the hydro-ethanolic extract (CST). The antioxidant capacity was validated through various assays, and the ability to mitigate H2O2-induced oxidative stress and enhance fermentation was demonstrated in Saccharomyces cerevisiae. This study reports that C. sativus tepals extract reduces oxidative stress and boosts ethanol fermentation in yeast, paving the way for applications in the food and biofuels sectors. Further validation in RAW 264.7 macrophages confirmed CST's significant anti-inflammatory effects, indicating its potential for pharmaceutical, cosmeceutical, and nutraceutical applications. In silico studies identified potential targets involved in antioxidant and anti-inflammatory processes, shedding light on possible interaction mechanisms with Kaempferol 3-O-sophoroside (KOS-3), the predominant compound in the extract. The integration of LCA studies highlighted the environmental benefits of this approach. Overall, this research underscores the value of using waste-derived extracts through "green" methodologies, offering a model that may provide significant advantages for further evaluations compared to traditional methodologies and supporting the circular bioeconomy.

2.
Cells ; 13(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39273071

RESUMO

Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder caused by mutations in the homogentisate 1,2-dioxygenase (HGD) gene, leading to the accumulation of homogentisic acid (HGA), causing severe inflammatory conditions. Recently, the presence of serum amyloid A (SAA) has been reported in AKU tissues, classifying AKU as novel secondary amyloidosis; AA amyloidosis is characterized by the extracellular tissue deposition of fibrils composed of fragments of SAA. AA amyloidosis may complicate several chronic inflammatory conditions, like rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, chronic infections, neoplasms, etc. Treatments of AA amyloidosis relieve inflammatory disorders by reducing SAA concentrations; however, no definitive therapy is currently available. SAA regulation is a crucial step to improve AA secondary amyloidosis treatments. Here, applying a comprehensive in vitro and in silico approach, we provided evidence that HGA is a disruptor modulator of SAA, able to enhance its polymerization, fibril formation, and aggregation upon SAA/SAP colocalization. In silico studies deeply dissected the SAA misfolding molecular pathway and SAA/HGA binding, suggesting novel molecular insights about it. Our results could represent an important starting point for identifying novel therapeutic strategies in AKU and AA secondary amyloidosis-related diseases.


Assuntos
Alcaptonúria , Ácido Homogentísico , Proteína Amiloide A Sérica , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Humanos , Ácido Homogentísico/metabolismo , Agregados Proteicos , Amiloidose/metabolismo , Amiloidose/patologia , Amiloide/metabolismo , Modelos Biológicos , Homogentisato 1,2-Dioxigenase/metabolismo , Homogentisato 1,2-Dioxigenase/genética
3.
Life (Basel) ; 14(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38929746

RESUMO

The concept of a "circular bioeconomy" holds great promise for the health, cosmetic, and nutrition sectors by re-using Castanea sativa (Mill.) by-products. This sustainable resource is rich in bioactive secondary metabolites with antioxidant and anti-inflammatory properties. By transforming these by-products into high-value products for human health, we can promote sustainable economic growth and reduce the environmental impact of traditional waste disposal, adding value to previously underutilized resources. In the present study, we investigated the antioxidant capacity, phytochemical composition, and in vitro antioxidant and anti-inflammatory activity of C. sativa burr (CSB) aqueous extract. The spectrophotometric study revealed high total phenolic content (TPC) values with significant antioxidant and anti-radical properties. Using UPLC-MS/MS techniques, the phytochemical investigation identified 56 metabolites, confirming the presence of phenolic compounds in CSBs. In addition, CSBs significantly downregulated pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophage cells without significant cell toxicity. Lastly, in silico studies pinpointed three kinases from RAW 264.7 cells as binding partners with ellagic acid, the predominant compound found in our extract. These findings strongly advocate for the recycling and valorization of C. sativa by-products, challenging their conventional classification as mere "waste".

4.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473765

RESUMO

Currently, many environmental and energy-related problems are threatening the future of our planet. In October 2022, the Worldmeter recorded the world population as 7.9 billion people, estimating that there will be an increase of 2 billion by 2057. The rapid growth of the population and the continuous increase in needs are causing worrying conditions, such as pollution, climate change, global warming, waste disposal, and natural resource reduction. Looking for novel and innovative methods to overcome these global troubles is a must for our common welfare. The circular bioeconomy represents a promising strategy to alleviate the current conditions using biomass-like natural wastes to replace commercial products that have a negative effect on our ecological footprint. Applying the circular bioeconomy concept, we propose an integrated in silico and in vitro approach to identify antioxidant bioactive compounds extracted from chestnut burrs (an agroforest waste) and their potential biological targets. Our study provides a novel and robust strategy developed within the circular bioeconomy concept aimed at target and drug discovery for a wide range of diseases. Our study could open new frontiers in the circular bioeconomy related to target and drug discovery, offering new ideas for sustainable scientific research aimed at identifying novel therapeutical strategies.


Assuntos
Antioxidantes , Mudança Climática , Humanos , Biomassa , Descoberta de Drogas , Poluição Ambiental
5.
Front Bioinform ; 2: 891553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353214

RESUMO

The transmembrane glycoprotein CD93 has been identified as a potential new target to inhibit tumor angiogenesis. Recently, Multimerin-2 (MMRN2), a pan-endothelial extracellular matrix protein, has been identified as a ligand for CD93, but the interaction mechanism between these two proteins is yet to be studied. In this article, we aim to investigate the structural and functional effects of induced mutations on the binding domain of CD93 to MMRN2. Starting from experimental data, we assessed how specific mutations in the C-type lectin-like domain (CTLD) affect the binding interaction profile. We described a four-step workflow in order to predict the effects of variations on the inter-residue interaction network at the PPI, based on evolutionary information, complex network metrics, and energetic affinity. We showed that the application of computational approaches, combined with experimental data, allowed us to gain more in-depth molecular insights into the CD93-MMRN2 interaction, offering a platform for developing innovative therapeutics able to target these molecules and block their interaction. This comprehensive molecular insight might prove useful in drug design in cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA