Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Adv ; 10(11): eadm8600, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478615

RESUMO

Cancer diagnosis by metabolic MRI proposes to follow the fate of glycolytic precursors such as pyruvate or glucose, and their in vivo conversion into lactate. This study compares the 2H MRI outlooks afforded by these metabolites when targeting a pancreatic cancer model. Exogenously injected [3,3',3″-2H3]-pyruvate was visible only briefly; it generated a deuterated lactate signal throughout the body that faded after ~5 min, showing a minor concentration bias at the rims of the tumors. [6,6'-2H2]-glucose by contrast originated a lactate signal that localized clearly within the tumors, persisting for over an hour. Investigations alternating deuterated and nondeuterated glucose injections revealed correlations between the lactate generation and the glucose available at the tumor, evidencing a continuous and avid glucose consumption generating well-localized lactate signatures as driven by the Warburg effect. This is by contrast to the transient and more promiscuous pyruvate-to-lactate transformation, which seemed subject to transporter and kinetics effects. The consequences of these observations within metabolic MRI are briefly discussed.


Assuntos
Neoplasias Pancreáticas , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Deutério , Espectroscopia de Ressonância Magnética/métodos , Glucose/metabolismo , Imageamento por Ressonância Magnética , Neoplasias Pancreáticas/diagnóstico por imagem , Ácido Láctico , Imagem Molecular
2.
J Biomol NMR ; 78(1): 19-30, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38102490

RESUMO

A recently developed homonuclear dipolar recoupling scheme, Adiabatic Linearly FREquency Swept reCOupling (AL FRESCO), was applied to record two-dimensional (2D) 15N-15N correlations on uniformly 15N-labeled GB1 powders. A major feature exploited in these 15N-15N correlations was AL FRESCO's remarkably low RF power demands, which enabled seconds-long mixing schemes when establishing direct correlations. These 15N-15N mixing schemes proved efficient regardless of the magic-angle spinning (MAS) rate and, being nearly free from dipolar truncation effects, they enabled the detection of long-range, weak dipolar couplings, even in the presence of strong short-range dipolar couplings. This led to a connectivity information that was significantly better than that obtained with spontaneously proton-driven, 15N spin-diffusion experiments. An indirect approach producing long-range 15N-15N correlations was also tested, relying on short (ms-long) 1HN-1HN mixings schemes while applying AL FRESCO chirped pulses along the 15N channel. These indirect mixing schemes produced numerous long-distance Ni-Ni±n (n = 2 - 5) correlations, that might be useful for characterizing three-dimensional arrangements in proteins. Once again, these AL FRESCO mediated experiments proved more informative than variants based on spin-diffusion-based 1HN-1HN counterparts.


Assuntos
Peptídeos , Proteínas , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Imageamento por Ressonância Magnética , Prótons
3.
Diagnostics (Basel) ; 13(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38066757

RESUMO

Quantitative correlations between T2 and ADC values were explored on cancerous breast lesions using spatiotemporally encoded (SPEN) MRI. To this end, T2 maps of patients were measured at more than one b-value, and ADC maps at several echo time values were recorded. SPEN delivered quality, artifact-free, TE-weighted DW images, from which T2-ADC correlations could be obtained despite the signal losses brought about by diffusion and relaxation. Data confirmed known aspects of breast cancer lesions, including their reduced ADC values vs. healthy tissue. Data also revealed an anticorrelation between the T2 and ADC values, when comparing regions with healthy and diseased tissues. This is contrary to expectations based on simple water restriction considerations. It is also contrary to what has been observed in a majority of porous materials and tissues. Differences between the healthy tissue of the lesion-affected breast and healthy tissue in the contralateral breast were also noticed. The potential significance of these trends is discussed, as is the potential of combining T2- and ADC-weightings to achieve an enhanced endogenous MRI contrast about the location of breast cancer lesions.

4.
Sci Rep ; 13(1): 19998, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968574

RESUMO

Deuterium metabolic imaging (DMI) is a promising tool for investigating a tumor's biology, and eventually contribute in cancer diagnosis and prognosis. In DMI, [6,6'-2H2]-glucose is taken up and metabolized by different tissues, resulting in the formation of HDO but also in an enhanced formation of [3,3'-2H2]-lactate at the tumor site as a result of the Warburg effect. Recent studies have shown DMI's suitability to highlight pancreatic cancer in murine models by [3,3'-2H2]-lactate formation; an important question is whether DMI can also differentiate between these tumors and pancreatitis. This differentiation is critical, as these two diseases are hard to distinguish today radiologically, but have very different prognoses requiring distinctive treatments. Recent studies have shown the limitations that hyperpolarized MRI faces when trying to distinguish these pancreatic diseases by monitoring the [1-13C1]-pyruvate→[1-13C1]-lactate conversion. In this work, we explore DMI's capability to achieve such differentiation. Initial tests used a multi-echo (ME) SSFP sequence, to identify any metabolic differences between tumor and acute pancreatitis models that had been previously elicited very similar [1-13C1]-pyruvate→[1-13C1]-lactate conversion rates. Although ME-SSFP provides approximately 5 times greater signal-to-noise ratio (SNR) than the standard chemical shift imaging (CSI) experiment used in DMI, no lactate signal was observed in the pancreatitis model. To enhance lactate sensitivity further, we developed a new, weighted-average, CSI-SSFP approach for DMI. Weighted-average CSI-SSFP improved DMI's SNR by another factor of 4 over ME-SSFP-a sensitivity enhancement that sufficed to evidence natural abundance 2H fat in abdominal images, something that had escaped the previous approaches even at ultrahigh (15.2 T) MRI fields. Despite these efforts to enhance DMI's sensitivity, no lactate signal could be detected in acute pancreatitis models (n = 10; [3,3'-2H2]-lactate limit of detection < 100 µM; 15.2 T). This leads to the conclusion that pancreatic tumors and acute pancreatitis may be clearly distinguished by DMI, based on their different abilities to generate deuterated lactate.


Assuntos
Neoplasias Pancreáticas , Pancreatite , Camundongos , Humanos , Animais , Deutério , Pancreatite/diagnóstico por imagem , Doença Aguda , Modelos Animais de Doenças , Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo
5.
NMR Biomed ; 36(11): e4995, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37401393

RESUMO

Deuterium metabolic imaging (DMI) is a promising molecular MRI approach, which follows the administration of deuterated substrates and their metabolization. [6,6'-2 H2 ]-glucose for instance is preferentially converted in tumors to [3,3'-2 H2 ]-lactate as a result of the Warburg effect, providing a distinct resonance whose mapping using time-resolved spectroscopic imaging can diagnose cancer. The MR detection of low-concentration metabolites such as lactate, however, is challenging. It has been recently shown that multi-echo balanced steady-state free precession (ME-bSSFP) increases the signal-to-noise ratio (SNR) of these experiments approximately threefold over regular chemical shift imaging; the present study examines how DMI's sensitivity can be increased further by advanced processing methods. Some of these, such as compressed sensing multiplicative denoising and block-matching/3D filtering, can be applied to any spectroscopic/imaging methods. Sensitivity-enhancing approaches were also specifically tailored to ME-bSSFP DMI, by relying on priors related to the resonances' positions and to features of the metabolic kinetics. Two new methods are thus proposed that use these constraints for enhancing the sensitivity of both the spectral images and the metabolic kinetics. The ability of these methods to improve DMI is evidenced in pancreatic cancer studies carried at 15.2 T, where suitable implementations of the proposals imparted eightfold or more SNR improvement over the original ME-bSSFP data, at no informational cost. Comparisons with other propositions in the literature are briefly discussed.

6.
Magn Reson Med ; 90(2): 643-654, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37010477

RESUMO

PURPOSE: To assess the feasibility and reliability of a DWI protocol based on spatiotemporally encoding (SPEN), to target prostate lesions along guidelines normally used in EPI-based DWI clinical practice. METHODS: Prostate Imaging-Reporting and Data System recommendations underlying clinical prostate scans were used to develop a SPEN-based DWI protocol, which included a novel, local, low-rank regularization algorithm. These DWI acquisitions were run at 3 T under similar nominal spatial resolutions and diffusion-weighting b-values as used in EPI-based clinical studies. Prostates of 11 patients suspected of clinically significant prostate cancer lesions were therefore scanned using the two methods, with the same number of slices, same slice thickness, and same interslice gaps. RESULTS: Of the 11 patients scanned, SPEN and EPI provided comparable information in 7 of the cases, whereas EPI was deemed superior in a case for which SPEN images had to be acquired with a shorter effective TR owing to scan-time constraints. SPEN provided reduced susceptibility to field-derived distortions in 3 of the cases. CONCLUSIONS: SPEN's ability to provide prostate lesion contrast was most clearly evidenced for DW images acquired with b ≥ 900 s/mm2 . SPEN also succeeded in decreasing occasional image distortions in regions close to the rectum, affected by field inhomogeneities. EPI advantages arose when using short effective TRs, a regime in which SPEN-based DWI was handicapped by its use of nonselective spin inversions, leading to the onset of an additional T1 weighting.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos de Viabilidade , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Imagem Ecoplanar/métodos
7.
Metabolites ; 11(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200839

RESUMO

Recent magnetic resonance studies in healthy and cancerous organs have concluded that deuterated metabolites possess highly desirable properties for mapping non-invasively and, as they happen, characterizing glycolysis and other biochemical processes in animals and humans. A promising avenue of this deuterium metabolic imaging (DMI) approach involves looking at the fate of externally administered 2H6,6'-glucose, as it is taken up and metabolized into different products as a function of time. This study employs deuterium magnetic resonance to follow the metabolism of wildtype and preeclamptic pregnant mice models, focusing on maternal and fetoplacental organs over ≈2 h post-injection. 2H6,6'-glucose uptake was observed in the placenta and in specific downstream organs such as the fetal heart and liver. Main metabolic products included 2H3,3'-lactate and 2H-water, which were produced in individual fetoplacental organs with distinct time traces. Glucose uptake in the organs of most preeclamptic animals appeared more elevated than in the control mice (p = 0.02); also higher was the production of 2H-water arising from this glucose. However, the most notable differences arose in the 2H3,3'-lactate concentration, which was ca. two-fold more abundant in the placenta (p = 0.005) and in the fetal (p = 0.01) organs of preeclamptic-like animals, than in control mice. This is consistent with literature reports about hypoxic conditions arising in preeclamptic and growth-restricted pregnancies, which could lead to an enhancement in anaerobic glycolysis. Overall, the present measurements suggest that DMI, a minimally invasive approach, may offer new ways of studying and characterizing health and disease in mammalian pregnancies, including humans.

8.
Magn Reson Med ; 86(5): 2604-2617, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34196041

RESUMO

PURPOSE: Deuterium metabolic imaging (DMI) maps the uptake of deuterated precursors and their conversion into lactate and other markers of tumor metabolism. Even after leveraging 2 H's short T1 s, DMI's signal-to-noise ratio (SNR) is limited. We hypothesize that a multi-echo balanced steady-state free precession (ME-bSSFP) approach would increase SNR compared to chemical shift imaging (CSI), while achieving spectral isolation of the metabolic precursors and products. METHODS: Suitably tuned 2 H ME-bSSFP (five echo times [TEs], ΔTE = 2.2 ms, repetition time [TR]/flip-angle = 12 ms/60°) was implemented at 15.2T and compared to CSI (TR/flip-angle = 95 ms/90°) regarding SNR and spectral isolation, in simulations, in deuterated phantoms and for the in vivo diagnosis of a mouse tumor model of pancreatic adenocarcinoma (N = 10). RESULTS: Simulations predicted an SNR increase vs. CSI of 3-5, and that the peaks of 2 H-water, 2 H6,6' -glucose, and 2 H3,3' -lactate can be well isolated by ME-bSSFP; phantoms confirmed this. In vivo, at equal spatial resolution (1.25 × 1.25 mm2 ) and scan time (10 min), 2 H6,6' -glucose's and 2 H3,3' -lactate's SNR were indeed higher for bSSFP than for CSI, three-fold for glucose (57 ± 30 vs. 19 ± 11, P < .001), doubled for water (13 ± 5 vs. 7 ± 3, P = .005). The time courses and overall localization of all metabolites agreed well, comparing CSI against ME-bSSFP. However, a clearer localization of glucose in kidneys and bladder, the detection of glucose-avid rims in certain tumors, and a heterogeneous pattern of intra-tumor lactate production could only be observed using ME-bSSFP's higher resolution. CONCLUSIONS: ME-bSSFP provides greater SNR per unit time than CSI, providing for higher spatial resolution mapping of glucose uptake and lactate production in tumors.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Animais , Deutério , Imageamento por Ressonância Magnética , Camundongos , Neoplasias Pancreáticas/diagnóstico por imagem , Imagens de Fantasmas , Razão Sinal-Ruído
9.
NMR Biomed ; 34(9): e4569, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34137085

RESUMO

Detecting and mapping metabolism in tissues represents a major step in detecting, characterizing, treating and understanding cancers. Recently introduced deuterium metabolic imaging techniques could offer a noninvasive route for the metabolic imaging of animals and humans, based on using 2 H magnetic resonance spectroscopic imaging (MRSI) to detect the uptake of deuterated glucose and the fate of its metabolic products. In this study, 2 H6,6' -glucose was administered to mice cohorts that had been orthotopically implanted with two different models of pancreatic ductal adenocarcinoma (PDAC), involving PAN-02 and KPC cell lines. As the tumors grew, 2 H6,6' -glucose was administered as bolii into the animals' tail veins, and 2 H MRSI images were recorded at 15.2 T. 2D phase-encoded chemical shift imaging experiments could detect a signal from this deuterated glucose immediately after the bolus injection for both the PDAC models, reaching a maximum in the animals' tumors ~ 20 min following administration, and nearly total decay after ~ 40 min. The main metabolic reporter of the cancers was the 2 H3,3' -lactate signal, which MRSI could detect and localize on the tumors when these were 5 mm or more in diameter. Lactate production time traces varied slightly with the animal and tumor model, but in general lactate peaked at times of 60 min or longer following injection, reaching concentrations that were ~ 10-fold lower than those of the initial glucose injection. This 2 H3,3' -lactate signal was only visible inside the tumors. 2 H-water could also be detected as deuterated glucose's metabolic product, increasing throughout the entire time course of the experiment from its ≈10 mM natural abundance background. This water resonance could be imaged throughout the entire abdomen of the animals, including an enhanced presence in the tumor, but also in other organs like the kidney and bladder. These results suggest that deuterium MRSI may serve as a robust, minimally invasive tool for the monitoring of metabolic activity in pancreatic tumors, capable of undergoing clinical translation and supporting decisions concerning treatment strategies. Comparisons with in vivo metabolic MRI experiments that have been carried out in other animal models are presented and their differences/similarities are discussed.


Assuntos
Deutério/química , Glucose/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glucose/administração & dosagem , Injeções Intravenosas , Ácido Láctico/metabolismo , Metaboloma , Camundongos , Água
10.
J Magn Reson Imaging ; 53(6): 1913-1925, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33368734

RESUMO

Diffusion-weighted imaging (DWI) can improve breast cancer characterizations, but often suffers from low image quality -particularly at informative b > 1000 s/mm2 values. The aim of this study was to evaluate multishot approaches characterizing Gaussian and non-Gaussian diffusivities in breast cancer. This was a prospective study, in which 15 subjects, including 13 patients with biopsy-confirmed breast cancers, were enrolled. DWI was acquired at 3 T using echo planar imaging (EPI) with and without zoomed excitations, readout-segmented EPI (RESOLVE), and spatiotemporal encoding (SPEN); dynamic contrast-enhanced (DCE) data were collected using three-dimensional gradient-echo T1 weighting; anatomies were evaluated with T2 -weighted two-dimensional turbo spin-echo. Congruence between malignancies delineated by DCE was assessed against high-resolution DWI scans with b-values in the 0-1800 s/mm2 range, as well as against apparent diffusion coefficient (ADC) and kurtosis maps. Data were evaluated by independent magnetic resonance scientists with 3-20 years of experience, and radiologists with 6 and 20 years of experience in breast MRI. Malignancies were assessed from ADC and kurtosis maps, using paired t tests after confirming that these values had a Gaussian distribution. Agreements between DWI and DCE datasets were also evaluated using Sorensen-Dice similarity coefficients. Cancerous and normal tissues were clearly separable by ADCs: by SPEN their average values were (1.03 ± 0.17) × 10-3 and (1.69 ± 0.19) × 10-3  mm2 /s (p < 0.0001); by RESOLVE these values were (1.16 ± 0.16) × 10-3 and (1.52 ± 0.14) × 10-3 (p = 0.00026). Kurtosis also distinguished lesions (K = 0.64 ± 0.15) from normal tissues (K = 0.45 ± 0.05), but only when measured by SPEN (p = 0.0008). The best statistical agreement with DCE-highlighted regions arose for SPEN-based DWIs recorded with b = 1800 s/mm2 (Sorensen-Dice coefficient = 0.67); DWI data recorded with b = 850 and 1200 s/mm2 , led to lower coefficients. Both ADC and kurtosis maps highlighted the breast malignancies, with ADCs providing a more significant separation. The most promising alternative for contrast-free delineations of the cancerous lesions arose from b = 1800 s/mm2 DWI. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 3.


Assuntos
Neoplasias da Mama , Imagem de Difusão por Ressonância Magnética , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Humanos , Distribuição Normal , Estudos Prospectivos
11.
NMR Biomed ; 34(2): e4446, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33219722

RESUMO

This study explored the usefulness of multiple quantitative MRI approaches to detect pancreatic ductal adenocarcinomas in two murine models, PAN-02 and KPC. Methods assayed included 1 H T1 and T2 measurements, quantitative diffusivity mapping, magnetization transfer (MT) 1 H MRI throughout the abdomen and hyperpolarized 13 C spectroscopic imaging. The progress of the disease was followed as a function of its development; studies were also conducted for wildtype control mice and for mice with induced mild acute pancreatitis. Customized methods developed for scanning the motion- and artifact-prone mice abdomens allowed us to obtain quality 1 H images for these targeted regions. Contrasts between tumors and surrounding tissues, however, were significantly different. Anatomical images, T2 maps and MT did not yield significant contrast unless tumors were large. By contrast, tumors showed statistically lower diffusivities than their surroundings (≈8.3 ± 0.4 x 10-4 for PAN-02 and ≈10.2 ± 0.6 x 10-4 for KPC vs 13 ± 1 x 10-3 mm2 s-1 for surroundings), longer T1 relaxation times (≈1.44 ± 0.05 for PAN-02 and ≈1.45 ± 0.05 for KPC vs 0.95 ± 0.10 seconds for surroundings) and significantly higher lactate/pyruvate ratios by hyperpolarized 13 C MR (0.53 ± 0.2 for PAN-02 and 0.78 ± 0.2 for KPC vs 0.11 ± 0.04 for control and 0.31 ± 0.04 for pancreatitis-bearing mice). Although the latter could also distinguish early-stage tumors from healthy animal controls, their response was similar to that in our pancreatitis model. Still, this ambiguity could be lifted using the 1 H-based reporters. If confirmed for other kinds of pancreatic tumors this means that these approaches, combined, can provide a route to an early detection of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Doença Aguda , Animais , Artefatos , Isótopos de Carbono , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral/transplante , Difusão , Genes Reporter , Proteínas Luminescentes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Movimento (Física) , Estadiamento de Neoplasias , Neoplasias Pancreáticas/patologia , Pancreatite/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética/métodos , Proteína Vermelha Fluorescente
12.
Magn Reson Med ; 84(3): 1391-1403, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32077516

RESUMO

PURPOSE: Diffusion weighted imaging (DWI) is increasingly used in evaluating breast cancer, as complement to DCE measurements of superior spatial resolution. Extracting fine morphological features in DWI is complicated by limitations that sequences such as EPI face, when applied to heterogeneous organs. This study investigates the ability of spatiotemporal encoding (SPEN) MRI to screen breast cancers and define diffusivity features at mm and sub-mm resolutions on a 3T scanner METHODS: Twenty-one patients with biopsy-confirmed breast cancer lesions were examined by T2-weighted and DCE protocols, by EPI-based DWI, and by SPEN-based protocols optimized for SNR, robustness and spatial resolution, respectively. RESULTS: Excellent agreement was found between the diffusivity parameters measured by all SPEN protocols and by EPI, with the lower ADCs characteristic of tumors being readily detected. SPEN provided systematically better SNR and improved qualitative results, particularly when dealing with small lesions surrounded by fatty tissue, or lesions close to tissue/air interfaces. SPEN-derived ADC maps collected at sub-mm in-plane resolutions recapitulated the high-resolution morphology shown by lesions using more sensitive DCE protocols. CONCLUSION: Measurements on a patient cohort validated SPEN's ability to quantify the diffusivity changes associated with the presence of breast cancers, while imaging the lesions with reduced distortions at sub-mm resolutions.


Assuntos
Artefatos , Neoplasias da Mama , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Sensibilidade e Especificidade
13.
NMR Biomed ; 33(2): e4186, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31797472

RESUMO

MRI leverages multiple modes of contrast to characterize stroke. High-magnetic-field systems enhance the performance of these MRI measurements. Previously, we have demonstrated that individually sodium and stem cell tracking metrics are enhanced at ultrahigh field in a rat model of stroke, and we have developed robust single-scan diffusion-weighted imaging approaches that utilize spatiotemporal encoding (SPEN) of the apparent diffusion coefficient (ADC) for these challenging field strengths. Here, we performed a multiparametric study of middle cerebral artery occlusion (MCAO) biomarker evolution focusing on comparison of these MRI biomarkers for stroke assessment during sub-acute recovery in rat MCAO models at 21.1 T. T2 -weighted MRI was used as the benchmark for identification of the ischemic lesion over the course of the study. The number of MPIO-induced voids measured by gradient-recalled echo, the SPEN measurement of ADC, and 23 Na MRI values were determined in the ischemic area and contralateral hemisphere, and relative performances for stroke classification were compared by receiver operator characteristic analysis. These measurements were associated with unique time-dependent trajectories during stroke recovery that changed the sensitivity and specificity for stroke monitoring during its evolution. Advantages and limitations of these contrasts, and the use of ultrahigh field for multiparametric stroke assessment, are discussed.


Assuntos
Imagem de Difusão por Ressonância Magnética , Compostos Férricos/química , AVC Isquêmico/diagnóstico por imagem , Células-Tronco Mesenquimais/metabolismo , Tamanho da Partícula , Sódio/química , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Biomarcadores/metabolismo , Humanos , Infarto da Artéria Cerebral Média/patologia , Curva ROC , Ratos
14.
Biochemistry ; 57(32): 4776-4787, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29979586

RESUMO

Many mutations that cause familial hypercholesterolemia localize to ligand-binding domain 5 (LA5) of the low-density lipoprotein receptor, motivating investigation of the folding and misfolding of this small, disulfide-rich, calcium-binding domain. LA5 folding is known to involve non-native disulfide isomers, yet these folding intermediates have not been structurally characterized. To provide insight into these intermediates, we used nuclear magnetic resonance (NMR) to follow LA5 folding in real time. We demonstrate that misfolded or partially folded disulfide intermediates are indistinguishable from the unfolded state when focusing on the backbone NMR signals, which provide information on the formation of only the final, native state. However, 13C labeling of cysteine side chains differentiated transient intermediates from the unfolded and native states and reported on disulfide bond formation in real time. The cysteine pairings in a dominant intermediate were identified using 13C-edited three-dimensional NMR, and coarse-grained molecular dynamics simulations were used to investigate the preference of this disulfide set over other non-native arrangements. The transient population of LA5 species with particular non-native cysteine connectitivies during folding supports the conclusion that cysteine pairing is not random and that there is a bias toward certain structural ensembles during the folding process, even prior to the binding of calcium.


Assuntos
Receptores de LDL/química , Receptores de LDL/metabolismo , Dissulfetos/química , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Ligação Proteica , Dobramento de Proteína
15.
NMR Biomed ; 31(11): e3995, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30052292

RESUMO

This study explores opportunities opened up by ultrahigh fields for in vivo saturation transfer brain magnetic resonance imaging experiments. Fast spin-echo images weighted by chemical exchange saturation transfer (CEST) effects were collected on Sprague-Dawley rats at 21.1 T, focusing on two neurological models. One involved a middle cerebral artery occlusion emulating ischemic stroke; the other involved xenografted glioma cells that were followed over the course of several days as they developed into brain tumors. A remarkably strong saturation-derived contrast was observed for the growing tumors when calculating magnetization transfer ratios at c. 3.8 ppm. This large contrast originated partially from an increase in the contribution of the amide CEST effect, but mostly from strong decreases in the Overhauser and magnetization transfer contributions to the upfield region, whose differential attenuations could be clearly discerned thanks to the ultrahigh field. The high spectral separation arising at 21.1 T also revealed numerous CEST signals usually overlapping at lower fields. Ischemic lesions were also investigated but, remarkably, magnetization and saturation transfer contrasts were nearly absent when computing transfer asymmetries using either high or low saturation power schemes. These behaviors were consistently observed at 24 hours post-occlusion, regardless of the data processing approach assayed. Considerations related to how various parameters defining these experiments depend on the magnetic field, primarily chemical shifts and T1 values, are discussed.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioma/diagnóstico por imagem , Glioma/patologia , Ratos Sprague-Dawley
16.
J Am Chem Soc ; 139(3): 1168-1176, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28085263

RESUMO

Many neurodegenerative diseases are characterized by misfolding and aggregation of an expanded polyglutamine tract (polyQ). Huntington's Disease, caused by expansion of the polyQ tract in exon 1 of the Huntingtin protein (Htt), is associated with aggregation and neuronal toxicity. Despite recent structural progress in understanding the structures of amyloid fibrils, little is known about the solution states of Htt in general, and about molecular details of their transition from soluble to aggregation-prone conformations in particular. This is an important question, given the increasing realization that toxicity may reside in soluble conformers. This study presents an approach that combines NMR with computational methods to elucidate the structural conformations of Htt Exon 1 in solution. Of particular focus was Htt's N17 domain sited N-terminal to the polyQ tract, which is key to enhancing aggregation and modulate Htt toxicity. Such in-depth structural study of Htt presents a number of unique challenges: the long homopolymeric polyQ tract contains nearly identical residues, exon 1 displays a high degree of conformational flexibility leading to a scaling of the NMR chemical shift dispersion, and a large portion of the backbone amide groups are solvent-exposed leading to fast hydrogen exchange and causing extensive line broadening. To deal with these problems, NMR assignment was achieved on a minimal Htt exon 1, comprising the N17 domain, a polyQ tract of 17 glutamines, and a short hexameric polyProline region that does not contribute to the spectrum. A pH titration method enhanced this polypeptide's solubility and, with the aid of ≤5D NMR, permitted the full assignment of N17 and the entire polyQ tract. Structural predictions were then derived using the experimental chemical shifts of the Htt peptide at low and neutral pH, together with various different computational approaches. All these methods concurred in indicating that low-pH protonation stabilizes a soluble conformation where a helical region of N17 propagates into the polyQ region, while at neutral pH both N17 and the polyQ become largely unstructured-thereby suggesting a mechanism for how N17 regulates Htt aggregation.


Assuntos
Proteína Huntingtina/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Humanos , Concentração de Íons de Hidrogênio , Conformação Proteica , Temperatura
17.
MAGMA ; 29(3): 617-39, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27194154

RESUMO

An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Anisotropia , Axônios/patologia , Encéfalo/patologia , Mapeamento Encefálico/métodos , Simulação por Computador , Metabolismo Energético , Glucose/análise , Temperatura Alta , Humanos , Movimento (Física) , Neurônios/patologia , Permeabilidade , Reprodutibilidade dos Testes , ATPase Trocadora de Sódio-Potássio/química , Espectrofotometria , Imagem Corporal Total
18.
Magn Reson Med ; 75(5): 2064-2071, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26096754

RESUMO

PURPOSE: Evaluate the usefulness of diffusion-weighted spatiotemporally encoded (SPEN) methods to obtain apparent diffusion coefficient (ADC) maps of fibroglandular human breast tissue, in the presence of silicone implants. METHODS: Seven healthy volunteers with breast augmentation were scanned at 3 Tesla (T) using customized SPEN sequences yielding separate silicone and water (1) H images in one scan, together with their corresponding diffusion-weightings. RESULTS: SPEN's ability to deliver multiple spectrally resolved images in a single scan, coupled to the method's substantial robustness to magnetic field heterogeneities, served to acquire ADC maps that could be freed from contributions that did not belong to fibroglandular tissue. CONCLUSION: SPEN-based sequences incorporating spectral discrimination and diffusion-weighting enable the acquisition of reliable ADC maps despite the presence of dominant signals from silicone implants, thereby opening new screening possibilities for the identification of malignancies in breast augmented patients.


Assuntos
Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Silicones/química , Adulto , Artefatos , Mama/cirurgia , Implantes de Mama , Feminino , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Campos Magnéticos , Pessoa de Meia-Idade , Modelos Estatísticos , Imagens de Fantasmas , Próteses e Implantes , Água/química
19.
Analyst ; 140(17): 5860-3, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26215673

RESUMO

Natural abundance (13)C NMR spectra of biological extracts are recorded in a single scan provided that the samples are hyperpolarized by dissolution dynamic nuclear polarization combined with cross polarization. Heteronuclear 2D correlation spectra of hyperpolarized breast cancer cell extracts can also be obtained in a single scan. Hyperpolarized NMR of extracts opens many perspectives for metabolomics.


Assuntos
Produtos Biológicos/química , Espectroscopia de Ressonância Magnética , Plantas/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Isótopos de Carbono/química , Linhagem Celular Tumoral , Feminino , Humanos , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Ressonância Magnética Nuclear Biomolecular , Plantas/metabolismo
20.
Magn Reson Med ; 73(6): 2163-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25045867

RESUMO

PURPOSE: Evaluating the usefulness of diffusion-weighted spatio-temporal encoding (SPEN) methods to provide quantitative apparent diffusion coefficient (ADC)-based characterizations of healthy and malignant human breast tissues, in comparison with results obtained using techniques based on spin-echo echo planar imaging (SE-EPI). METHODS: Twelve healthy volunteers and six breast cancer patients were scanned at 3T using scanner-supplied diffusion-weighted imaging EPI sequences, as well as two fully refocused SPEN variants programmed in-house. Suitable codes were written to process the data, including calculations of the actual b-values and retrieval of the ADC maps. RESULTS: Systematically better images were afforded by the SPEN scans, with negligible geometrical distortions and markedly weaker ghosting artifacts arising from either fat tissues or from strongly emitting areas such as cysts. SPEN-derived images provided improved characterizations of the fibroglandular tissues and of the lesions' contours. When translated into the calculation of the ADC maps, there were no significant differences between the mean ADCs derived from SPEN and SE-EPI: if reliable images were available, both techniques showed that ADCs decreased by nearly two-fold in the malignant lesion areas. CONCLUSION: SPEN-based sequences yielded diffusion-weighted breast images with minimal artifacts and distortions, enabling the calculation of improved ADC maps and the identification of decreased ADCs in malignant regions.


Assuntos
Neoplasias da Mama/patologia , Mama/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Adulto , Feminino , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA