Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
NPJ Precis Oncol ; 8(1): 19, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38273014

RESUMO

Recent advances in the genomics of glioblastoma (GBM) led to the introduction of molecular neuropathology but failed to translate into treatment improvement. This is largely attributed to the genetic and phenotypic heterogeneity of GBM, which are considered the major obstacle to GBM therapy. Here, we use advanced human GBM-like organoid (LEGO: Laboratory Engineered Glioblastoma-like Organoid) models and provide an unprecedented comprehensive characterization of LEGO models using single-cell transcriptome, DNA methylome, metabolome, lipidome, proteome, and phospho-proteome analysis. We discovered that genetic heterogeneity dictates functional heterogeneity across molecular layers and demonstrates that NF1 mutation drives mesenchymal signature. Most importantly, we found that glycerol lipid reprogramming is a hallmark of GBM, and several targets and drugs were discovered along this line. We also provide a genotype-based drug reference map using LEGO-based drug screen. This study provides new human GBM models and a research path toward effective GBM therapy.

2.
Nat Commun ; 14(1): 7441, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978190

RESUMO

Interferon-gamma (IFN-γ) signaling is necessary for the proinflammatory activation of macrophages but IFN-γ-independent pathways, for which the initiating stimuli and downstream mechanisms are lesser known, also contribute. Here we identify, by high-content screening, SEPTIN2 (SEPT2) as a negative regulation of IFN-γ-independent macrophage autoactivation. Mechanistically, endoplasmic reticulum (ER) stress induces the expression of SEPT2, which balances the competition between acetylation and ubiquitination of heat shock protein 5 at position Lysine 327, thereby alleviating ER stress and constraining M1-like polarization and proinflammatory cytokine release. Disruption of this negative feedback regulation leads to the accumulation of unfolded proteins, resulting in accelerated M1-like polarization, excessive inflammation and tissue damage. Our study thus uncovers an IFN-γ-independent macrophage proinflammatory autoactivation pathway and suggests that SEPT2 may play a role in the prevention or resolution of inflammation during infection.


Assuntos
Interferon gama , Ativação de Macrófagos , Humanos , Interferon gama/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo
3.
Front Microbiol ; 14: 1115556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825088

RESUMO

Cancer and microbial infections are significant worldwide health challenges. Numerous studies have demonstrated that bacteria may contribute to the emergence of cancer. In this review, we assemble bacterial species discovered in various cancers to describe their variety and specificity. The relationship between bacteria and macrophages in cancer is also highlighted, and we look for ample proof to establish a biological basis for bacterial-induced macrophage polarization. Finally, we quickly go over the potential roles of metabolites, cytokines, and microRNAs in the regulation of the tumor microenvironment by bacterially activated macrophages. The complexity of bacteria and macrophages in cancer will be revealed as we gain a better understanding of their pathogenic mechanisms, which will lead to new therapeutic approaches for both inflammatory illnesses and cancer.

4.
Clin Transl Med ; 13(1): e1153, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639831

RESUMO

BACKGROUND: The MYC oncoprotein, also known as the master regulator of genes, is a transcription factor that regulates numerous physiological processes, including cell cycle control, apoptosis, protein synthesis and cell adhesion, among others. MYC is overexpressed in approximately 70% of human cancers. Given its pervasive role in cancer biology, MYC down-regulation has become an attractive cancer treatment strategy. METHODS: The CRISPR/Cas9 method was used to produce KO cell models. Western blot was used to analyzed the expressions of MYC and TATA-binding proteinassociated factors 10 (TAF10) in cancer cells (MCF7, A549, HepG2 cells) Cell culture studies were performed to determine the mechanisms by which small molecules (Z363119456, Z363) affects MYC and TAF10 expressions and functions. Mouse studies were carried out to investigate the impact of Z363 regulation on tumor growth. RESULTS: Z363 activate Thyroid hormone Receptor-interacting Protein 12 (TRIP12), which phosphorylates MYC at Thr58, resulting in MYC ubiquitination and degradation and thereby regulating MYC target genes. Importantly, TRIP12 also induces TAF10 degradation, which reduces MYC protein levels. TRIP12, an E3 ligase, controls MYC levels both directly and indirectly by inhibiting MYC or TAF10 activity. CONCLUSIONS: In summary,these results demonstrate the anti-cancer properties of Z363, a small molecule that is co-regulated by TAF10 and MYC.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-myc , Fatores Associados à Proteína de Ligação a TATA , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo
5.
Biomed Pharmacother ; 155: 113792, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271569

RESUMO

BACKGROUND AND PURPOSE: Xin-Ji-Er-Kang (XJEK) is traditional Chinese formula presented excellent protective effects on several heart diseases, but the potential components and targets are still unclear. The aim of this study is to elucidate the effective components of XJEK and reveal its potential mechanism of cardioprotective effect in myocardial ischemia-reperfusion (MIR) injury. EXPERIMENTAL APPROACH: Firstly, the key compounds in XJEK, plasma and heart tissue were analyzed by high resolution mass spectrometry. Bioinformatics studies were also involved to disclose the potential targets and the binding sites for the key compounds. Secondly, to study the protective effect of XJEK on MIR injury and related mechanism, mice subjected to MIR surgery and gavage administered with XJEK for 6 weeks. Cardiac function parameters and apoptosis level of cardiac tissue were assessed. The potential mechanism was further verified by knock down of target protein in vitro. RESULTS: Pharmacokinetics studies showed that Sophora flavescens alkaloids, primarily composed with matrine, are the key component of XJEK. And, through bioinformatic analysis, we speculated JAK2 could be the potential target for XJEK, and could form stable hydrogen bonds with matrine. Administration of XJEK and matrine significantly improved heart function and reduced apoptosis of cardiomyocytes by increasing the phosphorylation of JAK2 and STAT3. The anti-apoptosis effect of XJEK and matrine was also observed on AC16 cells, and could be reversed by co-treatment with JAK2 inhibitor AG490 or knock-down of JAK2. CONCLUSION: XJEK exerts cardioprotective effect on MIR injury, which may be associated with the activation of JAK2/STAT3 signaling pathway.


Assuntos
Alcaloides , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Biologia Computacional , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Miócitos Cardíacos/metabolismo
6.
Molecules ; 27(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144632

RESUMO

Inflammation underlies a variety of physiological and pathological processes and plays an essential role in shaping the ensuing adaptive immune responses and in the control of pathogens. However, its physiological functions are not completely clear. Using a LPS-treated RAW264.7 macrophage inflammation model, we found that the production of inflammatory cytokines in ISOC1-deficient cells was significantly higher than that in the control group. It was further proved that ISOC1 deficiency could activate AKT1, and the overactivation of AKT1 could reduce the stability of PEX11B through protein modification, thereby reducing the peroxisome biogenesis and thus affecting inflammation. In this study, we reported for the first time the role of ISOC1 in innate immunity and elucidated the mechanism by which ISOC1 regulates inflammation through AKT1/PEX11B/peroxisome. Our results defined a new role of ISOC1 in the regulatory mechanism underlying the LPS-induced inflammatory response.


Assuntos
Hidrolases/metabolismo , Lipopolissacarídeos , Peroxissomos , Animais , Citocinas/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Peroxissomos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Food Chem Toxicol ; 168: 113321, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35931247

RESUMO

Vitamin C (VC), in regard to its effectiveness against tumors, has had a controversial history in cancer treatment. However, the anticancer mechanisms of VC are not fully understood. Here, we reported that VC exerted an anticancer effect on cancer cell and xenograft models via inhibiting HIF-1α-dependent cell proliferation and promoting p53-dependent cell apoptosis. To be specific, VC modulated the competitive binding of HIF-1α and p53 to their common E3 ubiquitin ligase CBL, thereby inhibiting tumorigenesis. Moreover, VC treatment activated SIRT1, resulting in p53 deacetylation and CBL-p53 complex dissociation, which in turn facilitated CBL recruitment of HIF-1α for ubiquitination in a proteasome-dependent manner. Altogether, our results provided a mechanistic rationale for exploring the therapeutic use of VC in cancer therapy.


Assuntos
Neoplasias da Mama , Ubiquitina-Proteína Ligases , Ácido Ascórbico/farmacologia , Ligação Competitiva , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Molecules ; 27(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889210

RESUMO

Breast cancer is one of the leading causes of death worldwide, and synthetic chemicals targeting specific proteins or various molecular pathways for tumor suppression, such as ERK inhibitors and degraders, have been intensively investigated. The targets of ERK participate in the regulation of critical cellular mechanisms and underpin the progression of anticancer therapy. In this study, we identified a novel small molecule, which we named Z734, as a new mitogen-activated protein kinase 1 (ERK2) degrader and demonstrated that Z734 inhibits cell growth by inducing p53-mediated apoptotic pathways in human breast cancer cells. Treatment with Z734 resulted in the inhibition of cancer cell proliferation, colony formation and migration invasion, as well as cancer cell death via apoptosis. In addition, the Co-IP and GST pulldown assays indicated that the HECT and RLD domains containing E3 ubiquitin protein ligase 3 (HERC3) could directly interact with ERK2 through the HECT domain, promoting ERK2 ubiquitination. We also observed a strong link between HERC3 and p53 for the modulation of apoptosis. HERC3 can increase the protein and phosphorylation levels of p53, which further promotes apoptotic activity. In a xenograft mouse model, the effect was obtained in a treatment group that combined Z734 with lapatinib compared with that of the single-treatment groups. In summary, our results indicated that Z734 actively controls the development of breast cancer through apoptosis, and HERC3 may mediate ERK2 and p53 signaling, which offers new potential targets for clinical therapy.


Assuntos
Neoplasias da Mama , Proteína Quinase 1 Ativada por Mitógeno , Animais , Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
Cell Host Microbe ; 29(12): 1788-1801.e6, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34822776

RESUMO

Previous work found that the co-occurring mutations R203K/G204R on the SARS-CoV-2 nucleocapsid (N) protein are increasing in frequency among emerging variants of concern or interest. Through a combination of in silico analyses, this study demonstrates that R203K/G204R are adaptive, while large-scale phylogenetic analyses indicate that R203K/G204R associate with the emergence of the high-transmissibility SARS-CoV-2 lineage B.1.1.7. Competition experiments suggest that the 203K/204R variants possess a replication advantage over the preceding R203/G204 variants, possibly related to ribonucleocapsid (RNP) assembly. Moreover, the 203K/204R virus shows increased infectivity in human lung cells and hamsters. Accordingly, we observe a positive association between increased COVID-19 severity and sample frequency of 203K/204R. Our work suggests that the 203K/204R mutations contribute to the increased transmission and virulence of select SARS-CoV-2 variants. In addition to mutations in the spike protein, mutations in the nucleocapsid protein are important for viral spreading during the pandemic.


Assuntos
Substituição de Aminoácidos , COVID-19/patologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Genoma Viral , Mutação , SARS-CoV-2/genética , Animais , COVID-19/epidemiologia , COVID-19/virologia , Linhagem Celular , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Cricetulus , Células Epiteliais/patologia , Células Epiteliais/virologia , Expressão Gênica , Aptidão Genética , Humanos , Modelos Moleculares , Mutagênese , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Conformação Proteica , SARS-CoV-2/classificação , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Seleção Genética , Índice de Gravidade de Doença , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/patogenicidade , Virulência , Replicação Viral
10.
Int Immunopharmacol ; 101(Pt A): 108178, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607226

RESUMO

Sepsis is an unusual systemic infection caused by bacteria, which is a life-threatening organ dysfunction. The innate immune system plays an important role in this process; however, the specific mechanisms remain unclear. Using the LPS + treated mouse model, we found that the survival rate of Tgm2-/- mice was lower than that of the control group, while the inflammation was much higher. We further showed that Tgm2 suppressed apoptosis by inhibiting the JNK/BCL-2 signaling pathway. More importantly, Tgm2 interacted with Aga and regulated mitochondria-mediated apoptosis induced by LPS. Our findings elucidated a protective mechanism of Tgm2 during LPS stimulation and may provide a new reference target for the development of novel anti-infective drugs from the perspective of host immunity.


Assuntos
Aspartilglucosilaminase/metabolismo , Macrófagos/patologia , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Sepse/imunologia , Animais , Apoptose/imunologia , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sepse/patologia
11.
World J Gastrointest Surg ; 12(5): 226-235, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32551028

RESUMO

BACKGROUND: Loss and/or dysfunction of interstitial Cajal-like cells (ICLCs) in the gallbladder may promote cholesterol gallstone formation by decreasing gallbladder motility. AIM: To study the effect of cholesterol on the proliferation and apoptosis of ICLCs from guinea pig gallbladders. METHODS: Guinea pig gallbladder ICLCs were isolated and cultured in vitro. The cells were exposed to cholesterol solutions at different concentrations (0, 25, 50, and 100 mg/L) for 24 h. Then, cell proliferation was detected by the CCK-8 method and the apoptosis rate was detected by flow cytometry. Further, the expression of the c-Kit protein was detected by Western blot and the expression level of c-Kit mRNA in the cells was detected by real-time quantitative PCR. RESULTS: After ICLCs were cultured with cholesterol at concentrations of 25, 50, and 100 mg/L, the proliferation rates decreased significantly (P < 0.05), whereas the apoptosis rates increased significantly (P < 0.05). Moreover, the expression of c-Kit protein and mRNA decreased significantly (P < 0.05). CONCLUSION: High cholesterol concentrations can inhibit the proliferation of ICLCs and promote apoptosis. This decrease in the ICLC proliferation rate might be caused by the inhibition of the stem cell factor/c-Kit signaling pathway.

12.
mBio ; 11(3)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487755

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that poses threats to the public. M. tuberculosis survives in macrophages by escaping from immune surveillance and clearance, which exacerbates the bacterial proliferation. However, the molecular mechanisms of this immune escape have not yet been fully understood. Using multiple cell and mouse models, we found that microRNA-325-3p (miR-325-3p) is upregulated after M. tuberculosis infection and Mir325-deficient mice show resistance to M. tuberculosis We demonstrated that miR-325-3p directly targets LNX1, an E3 ubiquitin ligase of NEK6, and that this hampers the proteasomal degradation of NEK6 in macrophages. The abnormal accumulation of NEK6 leads to the activation of STAT3 signaling, thus inhibiting the process of apoptosis and promoting the intracellular survival of M. tuberculosis Our findings not only reveal a new immune escape pathway of M. tuberculosis but also may provide new insights into the development of therapeutic approaches for drug-resistant TB.IMPORTANCE Intracellular survival of Mycobacterium tuberculosis results in bacterial proliferation and the spread of infection in lungs, consequently deteriorating the conditions of tuberculosis (TB) patients. This research discovers a new immune escape pathway of M. tuberculosis by modulating host miR-325-3p expression, thus leading to the intracellular survival of M. tuberculosis These findings make a contribution to the understanding of the immune escape of M. tuberculosis, and they provide a theoretical basis for the development of therapeutic approaches for drug-resistant TB.


Assuntos
Evasão da Resposta Imune , MicroRNAs/genética , Quinases Relacionadas a NIMA/genética , Fator de Transcrição STAT3/metabolismo , Tuberculose/microbiologia , Ubiquitina-Proteína Ligases/genética , Animais , Apoptose , Linhagem Celular , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Espaço Intracelular/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Quinases Relacionadas a NIMA/imunologia , Células RAW 264.7 , Fator de Transcrição STAT3/imunologia , Transdução de Sinais , Tuberculose/imunologia , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação
13.
Biochimie ; 174: 69-73, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32325113

RESUMO

Gateway recombination-based cloning, which eliminates the use of restriction endonucleases and ligase, has been widely used for the construction of high-throughput (HTP) vectors. However, this approach is very expensive and its two-stage reaction process is laborious and time consuming. Therefore, we developed a Gateway cloning method that uses fusion-PCR to generate attL recombination site adaptors, and the PCR products, which can be directly cloned into destination vectors, giving rise to Rapid One-Step Gateway (ROG) Cloning. 100% of cloning efficiencies were obtained by this ROG method. This method has no BP reaction/entry clone step, thus halving the cost and time consumed. Overall, this work provides a highly efficient, rapid, low-cost method for directional recombination cloning.


Assuntos
Clonagem Molecular/métodos , Vetores Genéticos , Reação em Cadeia da Polimerase/métodos , Agrobacterium tumefaciens/genética , Proteínas de Plantas/biossíntese , Recombinação Genética , Nicotiana/genética
14.
Mol Cancer Ther ; 18(6): 1104-1114, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962319

RESUMO

Although inhibiting EGFR-mediated signaling proved to be effective in treating certain types of cancers, a quickly evolved mechanism that either restores the EGFR signaling or activates an alternative pathway for driving the proliferation and survival of malignant cells limits the efficacy and utility of the approach via suppressing the EGFR functionality. Given the fact that overexpression of EGFR is commonly seen in many cancers, an EGFR-targeting antibody-drug conjugate (ADC) can selectively kill cancer cells independently of blocking EGFR-mediated signaling. Herein, we describe SHR-A1307, a novel anti-EGFR ADC, generated from an anti-EGFR antibody with prolonged half-life, and conjugated with a proprietary toxin payload that has increased index of EGFR targeting-dependent versus EGFR targeting-independent cytotoxicity. SHR-A1307 demonstrated strong and sustained antitumor activities in EGFR-positive tumors harboring different oncogenic mutations on EGFR, KRAS, or PIK3CA. Antitumor efficacy of SHR-A1307 correlated with EGFR expression levels in vitro and in vivo, regardless of the mutation status of EGFR signaling mediators and a resultant resistance to EGFR signaling inhibitors. Cynomolgus monkey toxicology study showed that SHR-A1307 is well tolerated with a wide therapeutic index. SHR-A1307 is a promising therapeutic option for EGFR-expressing cancers, including those resistant or refractory to the EGFR pathway inhibitors.


Assuntos
Aminobenzoatos/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Antineoplásicos Imunológicos/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Oligopeptídeos/imunologia , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/imunologia , Feminino , Células HEK293 , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Plasmid ; 98: 52-55, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30201136

RESUMO

RNA interference (RNAi), based on hairpin RNA (hpRNA) expression, plays an important role in functional analysis of plant genes. Traditional methods for making RNAi constructs usually involve multiple time-consuming cloning steps. We have developed a Gateway-compatible binary vector for RNAi-mediated gene knockdown in plants from pCAMBIA2301 and pHANNIBAL vectors. The new plant RNAi binary vector, named pCAMBIA2301-GW-RNAi, has two inverted repeated Gateway cassettes driven by the cauliflower mosaic virus 35S (CaMV 35S) promoter. This enables site-specific recombination at two sites by one Gateway LR reaction without restriction enzymes and ligases. The pCAMBIA2301-GW-RNAi vector's effectiveness was evaluated by Agrobacterium-mediated transient co-expression assays of overexpression and silencing constructs of HvCEBiP in Nicotiana benthamiana followed by western blot analysis. Obtained results show that the developed RNAi vector successfully knocked down 35S-driven expression of HvCEBiP, as expression levels of the encoded HvCEBiP protein were significantly reduced.


Assuntos
Agrobacterium/genética , Técnicas de Silenciamento de Genes/métodos , Genes de Plantas , Vetores Genéticos , Nicotiana/genética , Plasmídeos/genética , Interferência de RNA , Nicotiana/microbiologia
16.
Free Radic Biol Med ; 112: 616-630, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28912098

RESUMO

Mitochondrial reactive oxygen species (ROS) production has been implicated in the pathogenesis of fluoride toxicity in liver. Melatonin, an indolamine synthesized in the pineal gland, was previously shown to protect against sodium fluoride (NaF)-induced hepatotoxicity. This study investigated the protective effects of melatonin pretreatment on NaF-induced hepatotoxicity and elucidates the potential mechanism of melatonin-mediated protection. Reducing mitochondrial ROS by melatonin substantially attenuated NaF-induced NADPH oxidase 4 (Nox4) upregulation and cytotoxicity in L-02 cells. Melatonin exerted its hepatoprotective effects by upregulating Sirtuin 3 (Sirt3) expression level and its activity. Melatonin increased the activity of manganese superoxide dismutase (SOD2) by promoting Sirt3-mediated deacetylation and promoted SOD2 expression through Sirt3-regulated DNA-binding activity of forkhead box O3 (FoxO3a), thus inhibiting the production of mitochondrial ROS induced by NaF. Notably, increased peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) by melatonin activated the Sirt3 expression, which was regulated by an estrogen-related receptor (ERR) binding element (ERRE) mapped to Sirt3 promoter region. Analysis of the cell signaling pathway profiling systems and specific pathway inhibition indicated that melatonin enhances PGC-1α expression by activating the PI3K/AKT signaling pathway. Importantly, inhibition of melatonin receptor (MT)-1 blocked the melatonin-activated PI3K/AKT-PGC-1α-Sirt3 signaling. Mechanistic study revealed that the protective effects of melatonin were associated with down-regulation of JNK1/2 phosphorylation. Our findings provided a theoretical basis that melatonin mitigated NaF-induced hepatotoxicity, which, in part, was mediated through the activation of the Sirt3 pathway.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Melatonina/farmacologia , Fosfatidilinositol 3-Quinases/genética , Receptor MT1 de Melatonina/genética , Sirtuína 3/genética , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Injeções Intraperitoneais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Receptor MT1 de Melatonina/metabolismo , Transdução de Sinais , Sirtuína 3/metabolismo , Fluoreto de Sódio/antagonistas & inibidores , Fluoreto de Sódio/toxicidade , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
17.
Cell Death Dis ; 8(7): e2953, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28749472

RESUMO

MicroRNAs (miRNAs) regulate critical cell processes, such as apoptosis, proliferation, and development. However, the role of miRNAs in embryonic stem cell (ESC) neural differentiation induced by retinoic acid (RA) and factors that govern neural directional differentiation remain poorly understood. In this study, we demonstrated that miR-219 is sufficient in promoting mouse ESCs to undergo neural differentiation. We discovered that Foxj3 and Zbtb18, two target genes of miR-219, are not able to determine the process of RA-induced differentiation, however they prevent ESCs from differentiating into neural cells. We identified four downstream genes, namely, Olig1, Zic5, Erbb2, and Olig2, which are essential to the gene interaction networks for neural differentiation. These data explain the mechanism of RA-induced neural differentiation of mESCs on the basis of miRNAs and support the crucial role of miR-219 in neurodevelopment.


Assuntos
Células-Tronco Embrionárias/citologia , MicroRNAs/metabolismo , Neurônios/metabolismo , Tretinoína/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Nus , MicroRNAs/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição
18.
Environ Toxicol Pharmacol ; 54: 133-141, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28728132

RESUMO

Recently study shows that melatonin can protect embryos from the culture environment oxidative stress. However, the protective effect of melatonin on the mouse development of preimplantation embryos under sodium fluoride (NaF) induced oxidative stress is still unclear. Here, we showed that exposure to NaF significantly increased the reactive oxygen species (ROS) level, decreased the blastocyst formation rates, and increased the fragmentation, apoptosis and retardation of blastocysts in the development of mouse preimplantation embryos. However, the protective of melatonin remarkable increased the of blastocyst formation rates, maintained mitochondrial function and total antioxidant capacity by clearing ROS. Importantly the data showed that melatonin improved the activity of enzymatic antioxidants, including glutathione(GSH), superoxide dismutase(SOD), and malonaldehyde (MDA), and increased the expression levels of antioxidative genes. Taken together, our results indicate that melatonin prevent NaF-induced oxidative damage to mouse preimplantation embryo through down regulation of ROS level, stabilization of mitochondrial function and modulation of the activity of antioxidases and antioxidant genes.


Assuntos
Antioxidantes/farmacologia , Blastocisto/efeitos dos fármacos , Melatonina/farmacologia , Fluoreto de Sódio/toxicidade , Animais , Blastocisto/fisiologia , Caspase 3/metabolismo , Variações do Número de Cópias de DNA , DNA Mitocondrial/metabolismo , Glutationa/metabolismo , Malondialdeído/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
19.
Sci Rep ; 7(1): 672, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28386112

RESUMO

Accumulation of mitochondrial reactive oxygen species (mROS) has been implicated in the pathogenesis of fluorosis. As the main mitochondrial deacetylase, SIRT3 is closely associated with oxidative stress. To investigate the role of SIRT3 in response to sodium fluoride (NaF)-induced nephrotoxicity. Our results showed that NaF treatment impaired mitochondrial ultrastructure, decreased cell viability and increased apoptosis in TCMK-1 cells. Oxidative stress, detected by mROS and 8-Hydroxy-2'-deoxyguanosine (8-OHdG) were higher in NaF-treated cells, accompanied by decreased level of reduced glutathione (GSH). NaF reduces manganese superoxide dismutase (SOD2) expression through SIRT3-mediated DNA-binding activity of FoxO3a and decrease SOD2 activity by inhibiting SIRT3-mediated deacetylation. These effects were ameliorated by overexpression of SIRT3. Peroxisome proliferator-activated receptor-coactivator 1a (PGC-1α) interacted with nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) that bound to SIRT3 promoter to regulate SIRT3 expression. The study provides new insights into a critical NRF2/PGC-1α-SIRT3 pathway in response to NaF-induced nephritic oxidative injury. In vivo treatment of SIRT3-expressing adenovirus protects against NaF-induced nephritic injury in mice. Moreover, mechanistic study revealed that ERK1/2 activation was associated with increased apoptosis induced by NaF. In conclusion, these data shedding light on new approaches for treatment of NaF-induced nephrotoxicity.

20.
Biochem Biophys Res Commun ; 486(1): 198-204, 2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28286268

RESUMO

Resveratrol has been reported to ameliorate Cd-induced nephrotoxicity. However, the beneficial effects of resveratrol on Cd-induced nephrotoxicity and the underlying mechanisms of this protection remain unclear. Here, we showed that mouse renal tubular epithelial (TCMK-1) cells exposed to Cd experienced significantly increased mitochondrial reactive oxygen species (mROS) production, as well as decreased mitochondrial biogenesis and function. Cd exposure dramatically decreased Sirt3 protein expression and activity and promoted the acetylation of forkhead box O3 (FoxO3a). Moreover, Cd exposure led to a decreased binding affinity of FoxO3a to the promoters of both peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α and superoxide dismutase 2 (SOD2), powerful and broad regulators of mitochondrial biogenesis and mROS metabolism. Meanwhile, resveratrol remarkably reduced mROS generation by promoting Sirt3 enrichment within the mitochondria and subsequent upregulation of FoxO3a-mediated mitochondria gene expression of PGC-1α and SOD2. Importantly, mechanistic study revealed that ERK1/2 activation was associated with increased apoptosis induced by Cd, resveratrol suppressed Cd-induced apoptosis in mice kidney. Taken together, our data suggest a novel mechanism of action for resveratrol-attenuated Cd-induced cellular damage, which, in part, was mediated through the activation of the Sirt3/FoxO3a signaling pathway.


Assuntos
Células Epiteliais/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Mitocôndrias/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 3/metabolismo , Estilbenos/farmacologia , Superóxido Dismutase/metabolismo , Acetilação/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Cádmio/toxicidade , Células Cultivadas , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Immunoblotting , Túbulos Renais/citologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirtuína 3/genética , Superóxido Dismutase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA