Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Ethnopharmacol ; 331: 118284, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735420

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba leaf and seed have been traditionally used in ancient China for the treatment of cough and asthma. However, there is limited literature available on the anti-COPD effects and mechanisms of Ginkgo biloba. AIMS OF THE STUDY: The aim of this study was to comprehensively investigate the therapeutic potential of ginkgo extracts in COPD through a combination of in vivo and in vitro functional experiments. Transcriptomic analyses were also employed to uncover novel molecular mechanisms underlying the therapeutic effects of ginkgetin in COPD. MATERIALS AND METHODS: The therapeutic efficacy of ginkgo extracts was assessed in a COPD model. The anti-inflammatory effects of ginkgetin and its underlying molecular mechanisms were examined in A549 cells treated with cigarette smoke extract (CSE). Additionally, transcriptomic analyses were conducted to identify novel molecular pathways influenced by ginkgetin. These findings were further validated using quantitative real-time polymerase chain reaction (qPCR) and Western blot techniques. RESULTS: The ethyl acetate extract of Ginkgo biloba L. seeds and ginkgetin treatment significantly reduced cytokine production in COPD mice. Following drug administration, lung function improved in different groups. The transcriptome data strongly supports the inhibitory effect of ginkgetin on CSE-induced inflammation through the downregulation of the c/EBPß signaling pathway and subsequent inhibition of CCL2 expression. CONCLUSION: Our results demonstrate that ginkgetin, one of the biflavones found in Ginkgo biloba, exhibits inhibitory effects on smoke-induced airway inflammation. This effect is achieved through the downregulation of the c/EBPß signaling pathway and the reduction of CCL2 expression.


Assuntos
Biflavonoides , Quimiocina CCL2 , Regulação para Baixo , Ginkgo biloba , Doença Pulmonar Obstrutiva Crônica , Transdução de Sinais , Animais , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Humanos , Transdução de Sinais/efeitos dos fármacos , Ginkgo biloba/química , Regulação para Baixo/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Camundongos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fumaça/efeitos adversos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células A549 , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Extrato de Ginkgo
2.
Arterioscler Thromb Vasc Biol ; 44(1): 124-142, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942608

RESUMO

BACKGROUND: Patients with constitutive activation of DNA-sensing pathway through stimulator of IFN (interferon) genes (STING), such as those with STING-associated vasculopathy with onset in infancy, develop pulmonary hypertension (PH). However, the role of STING signaling in general PH patients is heretofore undescribed. Here, we seek to investigate the role of STING in PH development. METHODS: STING expression in patient lung samples was examined. PH was induced in global STING-deficient mice and global type I IFN receptor 1-deficient mice using bleomycin or chronic hypoxia exposure. PH development was evaluated by right ventricular systolic pressure and Fulton index, with additional histological and flow cytometric analysis. VEGF (vascular endothelial growth factor) expression on murine immune cells was quantified and evaluated with multiplex and flow cytometry. Human myeloid-derived cells were differentiated from peripheral blood mononuclear cells and treated with either STING agonist or STING antagonist for evaluation of VEGF secretion. RESULTS: Global STING deficiency protects mice from PH development, and STING-associated PH seems independent of type I IFN signaling. Furthermore, a role for STING-VEGF signaling pathway in PH development was demonstrated, with altered VEGF secretion in murine pulmonary infiltrated myeloid cells in a STING-dependent manner. In addition, pharmacological manipulation of STING in human myeloid-derived cells supports in vivo findings. Finally, a potential role of STING-VEGF-mediated apoptosis in disease development and progression was illustrated, providing a roadmap toward potential therapeutic applications. CONCLUSIONS: Overall, these data provide concrete evidence of STING involvement in PH, establishing biological plausibility for STING-related therapies in PH treatment.


Assuntos
Hipertensão Pulmonar , Interferon Tipo I , Humanos , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular , Hipertensão Pulmonar/genética , Leucócitos Mononucleares/metabolismo , Transdução de Sinais , Interferon Tipo I/metabolismo
3.
BMC Urol ; 23(1): 26, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855119

RESUMO

BACKGROUND: Bladder cancer is a very common malignancy with a high recurrence rate. The survival of patients with muscle-invasive bladder cancer is poor, and new therapies are needed. Livin has been reported to be upregulated in bladder cancer and influence the proliferation of cancer cells. MATERIALS AND METHODS: The Livin gene in human bladder cancer cell line T24 was knocked out, and the differentially expressed genes were identified by RNA-seq and qPCR. RESULTS: Livin knockdown affects gene expression and has strong negative effects on some cancer-promoting pathways. Furthermore, combined with bladder cancer clinical sample data downloaded from TCGA and GEO, 2 co-up-regulated genes and 58 co-down-regulated genes were identified and validated, which were associated with cancer proliferation and invasion. CONCLUSION: All these results suggest that Livin plays an important role in bladder cancer and could be a potential anticancer target in clinical therapy.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular , RNA-Seq , Neoplasias da Bexiga Urinária/genética
4.
J Gene Med ; 22(12): e3262, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32840014

RESUMO

BACKGROUND: Long non-coding RNA (lncRNA) small nucleolar RNA host gene 6 (SNHG6) exerts a regulatory role in cancer biology, although its detailed functions and mechanisms in colorectal cancer (CRC) still remain unclear. METHODS: A quantitative reverse transcriptase-polymerase chain reaction was implemented to investigate the expression of SNHG6, miR-181 family and Janus kinase 2 (JAK2) in CRC tissues and cell lines. The proliferation of CRC cells was detected by a cell counting kit-8 assay, and the apoptosis of CRC cells was determined by flow cytometry analysis. The interaction of the miR-181 family with SNHG6 or with the 3'-untranslated region of JAK2 was validated by the luciferase reporter gene method. The effects of SNHG6 and the miR-181 family on JAK2 expression were analyzed by western blotting. RESULTS: SNHG6 was significantly up-regulated in CRC samples. The knockdown of SNHG6 reduced the proliferation of CRC cells and promoted the apoptosis, whereas the over-expression of SNHG6 had the opposite effect. SNHG6 could bind with all the four members of the miR-181 family, and expression in miR-181 family members was significantly down-regulated in CRC samples. SNHG6 expression was negatively correlated with the miR-181 family member expression in CRC samples. Moreover, over-expressed SNHG6 significantly counteracted the inhibitory effect of miR-181 mimics on CRC cell proliferation, as well as the promoting effect on apoptosis. Furthermore, SNHG6 over-expression and knockdown can promote and inhibit JAK2 expression, respectively, and miR-181 family member function is opposite to that of SNHG6 by repressing JAK2. CONCLUSIONS: SNHG6 can exert a cancer-promoting effect in CRC by targeting miR-181 family members and up-regulating JAK2.


Assuntos
Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Janus Quinase 2/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Janus Quinase 2/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
5.
Mol Cell Biochem ; 472(1-2): 1-8, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32632609

RESUMO

Hypoxic-ischemic (HI) brain damage (HIBD) leads to high neonatal mortality and severe neurologic morbidity. Autophagy is involved in the pathogenesis of HIBD. This study aims to investigate the effect of long non-coding RNA colorectal neoplasia differentially expressed (CRNDE) on HIBD and to validate whether autophagy is involved in this process. A HIBD model in rat pups and a HI model in rat primary cerebrocortical neurons were established. Autophagy was evaluated by western blot. The HIBD in rats was evaluated by hematoxylin and eosin staining, TUNEL staining, triphenyl tetrazolium chloride staining, and morris water maze test. The HI injury in vitro was evaluated by determining cell viability and apoptosis. The results showed that CRNDE expression was time-dependently increased in the brain after HIBD. Administration with CRNDE shRNA-expressing lentiviruses alleviated pathological injury and apoptosis in rat hippocampus, decreased infarct volume, and improved behavior performance of rats subjected to HIBD. Furthermore, CRNDE silencing promoted cell viability and inhibited cell apoptosis in neurons exposed to HI. Moreover, CRNDE silencing promoted autophagy and the autophagy inhibitor 3-methyladenine counteracted the neuroprotective effect of CRNDE silencing on HI-induced neuronal injury both in vivo and in vitro. Collectively, CRNDE silencing alleviates HIBD, at least partially, through promoting autophagy.


Assuntos
Autofagia , Encéfalo/metabolismo , Hipóxia-Isquemia Encefálica/prevenção & controle , Neurônios/metabolismo , Fármacos Neuroprotetores , RNA Longo não Codificante/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Comportamento Animal , Encéfalo/patologia , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/patologia , Neurônios/patologia , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley
6.
Mol Cell Probes ; 52: 101565, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32234564

RESUMO

BACKGROUND: This study aimed to test the hypothesis that long non-coding RNA (lncRNA) colorectal neoplasia differentially expressed (CRNDE) could exacerbate brain injury caused by intrauterine infection in neonatal rats. METHODS: Intrauterine infection was induced in pregnant rats by lipopolysaccharide (LPS). After delivery, newborn rats with brain injury caused by intrauterine infection were randomly divided into control, control shRNA, and CRNDE shRNA groups. CRNDE expression in serum and amniotic fluid of pregnant rats and neonatal brain tissues were determined by quantitative real-time PCR (qRT-PCR). Morris water maze (MWM) task was used to test the spatial learning and memory ability. Histological examination and apoptosis detection were performed by hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. Immunohistochemistry was conducted to evaluate the activation of astrocytes and microglia. RESULTS: LncRNA CRNDE was highly expressed in serum and amniotic fluid of maternal rats and in brain tissues of offspring rats. Furthermore, shRNA-mediated CRNDE downregulation could rescue the spatial learning and memory ability, improve brain histopathological changes and cell death, and inhibit the activation of astrocytes and microglia caused by LPS. CONCLUSION: CRNDE silencing possessed a cerebral protective effect in neonatal rats with brain injury caused by interauterine infection.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/genética , RNA Longo não Codificante/metabolismo , Útero/microbiologia , Útero/patologia , Animais , Animais Recém-Nascidos , Astrócitos/patologia , Encéfalo/patologia , Lesões Encefálicas/fisiopatologia , Morte Celular , Citocinas/biossíntese , Feminino , Técnicas de Silenciamento de Genes , Humanos , Lipopolissacarídeos , Masculino , Memória , Microglia/patologia , Gravidez , RNA Longo não Codificante/genética , Ratos , Aprendizagem Espacial , Regulação para Cima/genética
7.
BMC Plant Biol ; 19(1): 413, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590655

RESUMO

BACKGROUND: Taxus spp. produces the anticancer drug, taxol, and hence is planted as an industrial crop in China. APETALA2/ethylene response element binding proteins (AP2/EREBPs) are the key regulators of plant development, growth, and stress responses. Several homologues control taxol biosynthesis. Identifying the AP2/EREBP proteins from Taxus is important to increase breeding and production and clarify their evolutionary processes. RESULTS: Among the 90 genes from multi Taxus chinensis transcriptome datasets, 81 encoded full-length AP2-containing proteins. A domain structure highly similar to that of angiosperm AP2/EREBPs was found in 2 AP2, 2 ANT, 1 RAV, 28 dehydration-responsive element-binding proteins, and 47 ethylene-responsive factors contained, indicating that they have extremely conservative evolution processes. A new subgroup protein, TcA3Bz1, contains three conserved AP2 domains and, a new domain structure of AP2/EREBPs that is different from that of known proteins. The new subtype AP2 proteins were also present in several gymnosperms (Gingko biloba) and bryophytes (Marchantia polymorpha). However, no homologue was found in Selaginella moellendorffii, indicating unknown evolutionary processes accompanying this plant's evolution. Moreover, the structures of the new subgroup AP2/EREBPs have different conserved domains, such as B3, zf-C3Hc3H, and agent domains, indicating their divergent evolution in bryophytes and gymnosperms. Interestingly, three repeats of AP2 domains have separately evolved from mosses to gymnosperms for most of the new proteins, but the AP2 domain of Gb_11937 has been replicated. CONCLUSION: The new subtype AP2/EREBPs have different origins and would enrich our knowledge of the molecular structure, origin, and evolutionary processes of AP2/EREBP transcription factors in plants.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Plantas/metabolismo , Taxus/metabolismo , Fator de Transcrição AP-2/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Ginkgo biloba/genética , Ginkgo biloba/metabolismo , Proteínas de Plantas/genética , Taxus/genética , Fator de Transcrição AP-2/genética
8.
Am J Physiol Lung Cell Mol Physiol ; 317(4): L434-L444, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364370

RESUMO

Pulmonary hypertension complicates the care of many patients with chronic lung diseases (defined as Group 3 pulmonary hypertension), yet the mechanisms that mediate the development of pulmonary vascular disease are not clearly defined. Despite being the most prevalent form of pulmonary hypertension, to date there is no approved treatment for patients with disease. Myeloid-derived suppressor cells (MDSCs) and endothelial cells in the lung express the chemokine receptor CXCR2, implicated in the evolution of both neoplastic and pulmonary vascular remodeling. However, precise cellular contribution to lung disease is unknown. Therefore, we used mice with tissue-specific deletion of CXCR2 to investigate the role of this receptor in Group 3 pulmonary hypertension. Deletion of CXCR2 in myeloid cells attenuated the recruitment of polymorphonuclear MDSCs to the lungs, inhibited vascular remodeling, and protected against pulmonary hypertension. Conversely, loss of CXCR2 in endothelial cells resulted in worsened vascular remodeling, associated with increased MDSC migratory capacity attributable to increased ligand availability, consistent with analyzed patient sample data. Taken together, these data suggest that CXCR2 regulates MDSC activation, informing potential therapeutic application of MDSC-targeted treatments.


Assuntos
Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Células Supressoras Mieloides/metabolismo , Fibrose Pulmonar/metabolismo , Receptores de Interleucina-8B/genética , Transdução de Sinais , Animais , Bleomicina/administração & dosagem , Comunicação Celular , Movimento Celular , Células Endoteliais/patologia , Feminino , Expressão Gênica , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipóxia/etiologia , Hipóxia/genética , Hipóxia/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Células Supressoras Mieloides/patologia , Cultura Primária de Células , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Receptores de Interleucina-8B/deficiência , Remodelação Vascular
9.
Sheng Wu Gong Cheng Xue Bao ; 35(6): 1109-1116, 2019 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-31232007

RESUMO

The discovery of hydroxylases in the anticancer drug taxol biosynthesis pathway is a hotspot and difficulty in current research. In this study, a new hydroxylase gene TcCYP725A22 (GenBank accession number: MF448646.1) was used to construct a sub-cellular localization vector pCAMIBA1303-TcCYP725A22-EGFP to get the transient expression in onion epidermal cells. Laser confocal microscopy revealed that the protein encoded by this gene was localized in the cell membrane. Furthermore, the recombinant plant expression plasmid pBI121-TcCYP725A22 was constructed. After transient transformation to the Taxus chinensis mediated by Agrobacterium tumefaciens LBA4404, qRT-PCR and LC-MS were utilized to analyze the effects of TcCYP725A22 overexpression on the synthesis of taxol. The results showed that, in the TcCYP725A22 overexpressed cell line, expression levels of most defined hydroxylase genes for taxol biosynthesis were increased, and the yield of taxanes were also increased. It was concluded that the hydroxylase gene TcCYP725A22 is likely involved in the biosynthetic pathway of taxol.


Assuntos
Taxus , Vias Biossintéticas , Oxigenases de Função Mista , Paclitaxel , Taxoides
10.
Front Plant Sci ; 9: 863, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977250

RESUMO

The multitherapeutic taxol, which can be obtained from Taxus spp., is the most widely used anticancer drug. Taxol biosynthesis is significantly regulated by jasmonate acid (JA), one of the most important endogenous hormones in land plants. Nevertheless, the JA-inducing mechanism remains poorly understood. MYC2 is one of the key regulators of JA signal transfer and the biosynthesis of various secondary metabolites. Here, TcMYC2a was identified to contain a basic helix-loop-helix (bHLH)-leucine zipper domain, a bHLH-MYC_N domain, and a BIF/ACT-like domain. TcMYC2a was also found to bind with TcJAZ3 in yeast, which was a homolog of Arabidopsis JASMONATE ZIM-domain JAZ proteins, indicating that TcMYC2a had a similar function to AtMYC2 of JA signal transduction. TcMYC2a was able to affect the expression of GUS reporter gene by binding with the T/G-box, G-box, and E-box, which were the key cis-elements of TASY and TcERF12/15 promoter. TcMYC2a overexpression also led to significantly increased expression of TASY, tat, dbtnbt, t13h, and t5h genes. Additionally, TcERF15, which played the positive role to regulate tasy gene, was up-regulated by TcMYC2a. All these results revealed that TcMYC2a can regulate taxol biosynthesis either directly or via ERF regulators depending on JA signaling transduction.

11.
Mol Med Rep ; 18(2): 1899-1908, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29956801

RESUMO

Hypoxic ischemic encephalopathy (HIE) is the most common brain injury following hypoxia and/or ischemia caused by various factors during the perinatal period, resulting in detrimental neurological deficits in the nervous system. Tanshinone IIA (Tan­IIA) is a potential agent for the treatment of cardiovascular and cerebrovascular diseases. In this study, the efficacy of Tan­IIA was investigated in a newborn mouse model of HIE. The dynamic mechanism of Tan­IIA was also investigated in the central nervous system of neonate mice. Intravenous injection of Tan­IIA (5 mg/kg) was administered and changes in oxidative stress, inflammation and apoptosis­associated proteins in neurons. Histology and immunohistochemistry was used to determine infarct volume and the number of damaged neurons by Fluoro­Jade C staining. The effects of Tan­IIA on mice with HIE were evaluated by body weight, brain water content, neurobehavioral tests and blood­brain barrier permeability. The results demonstrated that the apoptosis rate was decreased following Tan­IIA administration. Expression levels of pro­apoptotic proteins, caspase­3 and caspase­9 and P53 were downregulated. Expression of Bcl­2 anti­apoptotic proteins was upregulated by Tan­IIA treatment in neuro. Results also found that Tan­IIA treatment decreased production of inflammatory cytokines such as interleukin­1, tumor necrosis factor­α, C­X­C motif chemokine 10, and chemokine (C­C motif) ligand 12. Oxidative stress was also reduced by Tan­IIA in neurons, as determined by the expression levels of superoxide dismutase, glutathione and catalase, and the production of reactive oxygen species. The results demonstrated that Tan­IIA treatment reduced the infarct volume and the number of damaged neurons. Furthermore, body weight, brain water content and blood­brain barrier permeability were markedly improved by Tan­IIA treatment of newborn mice following HIE. Furthermore, the results indicated that Tan­IIA decreased Toll­like receptor­4 (TLR­4) and nuclear factor­κB (NF­κB) expression in neurons. TLR­4 treatment of neuronal cell in vitro addition stimulated NF­κB activity, and further enhanced the production of inflammatory cytokines and oxidative stress levels in neurons. In conclusion, these results suggest that Tan­IIA treatment is beneficial for improvement of HIE through TLR­4­mediated NF­κB signaling.


Assuntos
Abietanos/farmacologia , Encefalopatias/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , NF-kappa B/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Encefalopatias/imunologia , Encefalopatias/patologia , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Regulação da Expressão Gênica/imunologia , Camundongos
12.
Am J Respir Cell Mol Biol ; 58(2): 170-180, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28862882

RESUMO

Pulmonary hypertension (PH) complicates the care of patients with chronic lung disease, such as idiopathic pulmonary fibrosis (IPF), resulting in a significant increase in morbidity and mortality. Disease pathogenesis is orchestrated by unidentified myeloid-derived cells. We used murine models of PH and pulmonary fibrosis to study the role of circulating myeloid cells in disease pathogenesis and prevention. We administered clodronate liposomes to bleomycin-treated wild-type mice to induce pulmonary fibrosis and PH with a resulting increase in circulating bone marrow-derived cells. We discovered that a population of C-X-C motif chemokine receptor (CXCR) 2+ myeloid-derived suppressor cells (MDSCs), granulocytic subset (G-MDSC), is associated with severe PH in mice. Pulmonary pressures worsened despite improvement in bleomycin-induced pulmonary fibrosis. PH was attenuated by CXCR2 inhibition, with antagonist SB 225002, through decreasing G-MDSC recruitment to the lung. Molecular and cellular analysis of clinical patient samples confirmed a role for elevated MDSCs in IPF and IPF with PH. These data show that MDSCs play a key role in PH pathogenesis and that G-MDSC trafficking to the lung, through chemokine receptor CXCR2, increases development of PH in multiple murine models. Furthermore, we demonstrate pathology similar to the preclinical models in IPF with lung and blood samples from patients with PH, suggesting a potential role for CXCR2 inhibitor use in this patient population. These findings are significant, as there are currently no approved disease-specific therapies for patients with PH complicating IPF.


Assuntos
Hipertensão Pulmonar/patologia , Fibrose Pulmonar Idiopática/patologia , Células Supressoras Mieloides/patologia , Receptores de Interleucina-8B/metabolismo , Animais , Arginase/metabolismo , Bleomicina/farmacologia , Movimento Celular/efeitos dos fármacos , Ácido Clodrônico/farmacologia , Feminino , Interleucina-8/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Compostos de Fenilureia/farmacologia , Receptores de Interleucina-8B/antagonistas & inibidores
13.
Front Plant Sci ; 8: 1468, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878800

RESUMO

Taxus spp. is a highly valuable medicinal plant with multiple pharmacological effects on various cancers. Cytochrome P450s (CYP450s) play important roles in the biosynthesis of active compounds in Taxus spp., such as the famous diterpenoid, Taxol. However, some specific CYP450 enzymes involved in the biosynthesis of Taxol remain unknown, and the systematic identification of CYP450s in Taxus has not been reported. In this study, 118 full-length and 175 partial CYP450 genes were identified in Taxus chinensis transcriptomes. The 118 full-length genes were divided into 8 clans and 29 families. The CYP71 clan included all A-type genes (52) belonging to 11 families. The other seven clans possessed 18 families containing 66 non-A-type genes. Two new gymnosperm-specific families were discovered, and were named CYP864 and CYP947 respectively. Protein sequence alignments revealed that all of the T. chinensis CYP450s hold distinct conserved domains. The expression patterns of all 118 CYP450 genes during the long-time subculture and MeJA elicitation were analyzed. Additionally, the expression levels of 15 novel CYP725 genes in different Taxus species were explored. Considering all the evidence, 6 CYP725s were identified to be candidates for Taxol biosynthesis. The cis-regulatory elements involved in the transcriptional regulation were also identified in the promoter regions of CYP725s. This study presents a comprehensive overview of the CYP450 gene family in T. chinensis and can provide important insights into the functional gene studies of Taxol biosynthesis.

14.
Gene ; 620: 66-74, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28390989

RESUMO

Taxus spp. are ancient gymnosperms that produce a unique secondary metabolite, namely, taxol, an anticancer drug. JAZ proteins are key regulators of the JA signaling pathway, which control taxol biosynthesis. However, the JAZ proteins of Taxus spp. are poorly studied. In this work, nine JAZ genes from Taxus chinensis were identified using our previous transcriptome data and named as TcJAZ1-TcJAZ9. Of these nine TcJAZ proteins, eight contain Jas and TIFY domains, and the Jas domain of TcJAZ6 is incomplete. Most TcJAZs and PsJAZs are not related to AtJAZs and OsJAZs. Phylogenetic analysis divided all JAZ proteins from Arabidopsis thaliana, Oryza sativa, Picea sitchensis, and T. chinensis into eight subgroups; gymnosperms JAZs were classified into subgroups V-VIII, and angiosperm JAZs were categorized into subgroups I-V. Three motifs of subgroups VI-VIII were identified in gymnosperm JAZs, indicating that gymnosperm JAZ proteins exhibit a different evolutionary process from those of angiosperms. The expression patterns of nine TcJAZs showed that TcJAZ2/3/8 was a key regulator, indicating their important roles in T. chinensis. Results revealed that gymnosperm JAZs differ from angiosperm JAZs in terms of molecular structure. Three novel conserved motifs were found in TcJAZs and PsJAZs. This study provides a basis for research on JA regulatory system in Taxus spp. and for elucidating the significance of JA signaling pathway to land plants.


Assuntos
Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Filogenia , Proteínas de Plantas/genética , Taxus/genética , Fatores de Transcrição/genética , Motivos de Aminoácidos , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/química , Taxus/classificação , Taxus/efeitos dos fármacos , Fatores de Transcrição/química
15.
J Nanosci Nanotechnol ; 16(4): 4100-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451771

RESUMO

The efficacy of superparamagnetic iron oxide nanoparticles (SPIONs) for biomedical applications depends on the magnetic properties, long time stability in biological fluids, and specific targeting capacity. The properties of SPIONs were generally improved by surface modification, but common modification technologies were usually conducted with multi-steps under rigid conditions. In this work, a facile and simple approach to synthesize functionalized SPIONs contrast agents was set up. First of all, SPIONs were prepared by an improved ultrasonic co-precipitation method. Then the surfaces of these SPIONs were modified biomimeticly by dopamine (DA) with strong adhesion. At last, the c(RGDyK), a biomolecule with the capacity of specific targeting capacity towards liver tumor cells, were coupled with DA on SPIONs via Mannich reaction. Thus the novel magnetic composite nanoparticles (abbreviated as c(RGDyK)-PDA-SPIONs) were successfully prepared. The as-synthesized nanoparticles were characterized by scanning electron microscope (SEM), dynamic light scattering, magnetic hysteresis loop measuring instrument. As a result, that the c(RGDyK)-PDA-SPIONs had an average size of about 50 nm and uniform distribution, and had superparamagnetic properties, good water dispersion stability. The acute toxicity test of the assynthesized c(RGDyK)-PDA-SPIONs to mice was also investigated. It was observed that LD50 of c(RGDyK)-PDA-SPIONs was 4.38 g/kg, with a 95% confidence interval ranging from 3.49 g/kg to 5.87 g/kg. These results indicated the novel c(RGDyK)-PDA-SPIONs had excellent biocompatibility, which was endowed with a potential capacity to serve as MRI contrast agents in diagnosis and treatment of the liver tumor.


Assuntos
Materiais Biomiméticos/síntese química , Materiais Biomiméticos/toxicidade , Dextranos/síntese química , Dextranos/toxicidade , Nanopartículas de Magnetita/toxicidade , Oligopeptídeos/química , Oligopeptídeos/toxicidade , Animais , Dextranos/ultraestrutura , Nanopartículas de Magnetita/ultraestrutura , Teste de Materiais , Camundongos , Tamanho da Partícula
16.
Sheng Wu Gong Cheng Xue Bao ; 32(5): 554-564, 2016 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-29019194

RESUMO

Taxol is a secondary metabolite with prominent anti-tumor activity, but the yield cannot meet the growing clinical demand due to lower content in yew. Now, most enzyme genes involved in taxol biosynthesis have been cloned and identified, so that obtaining this drug by using synthetic biology method has become a hotspot in recent years. However, most hydroxylases involved in taxol biosynthetic pathway have not been explored. Here, we reviewed the progress on the biosynthesis pathway of taxol, especially concerning hydroxylase. The future research areas of taxol biosynthesis through synthetic biology were also discussed to provide basis for the discovery of uncharacterized hydroxylase genes and the mass taxol production by synthetic biology technology.


Assuntos
Oxigenases de Função Mista/metabolismo , Paclitaxel/biossíntese , Taxus/enzimologia , Vias Biossintéticas , Biologia Sintética
17.
Physiol Plant ; 156(1): 13-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26333689

RESUMO

Browning phenomena are ubiquitous in plant cell cultures that severely hamper scientific research and widespread application of plant cell cultures. Up to now, this problem still has not been well controlled due to the unclear browning mechanisms in plant cell cultures. In this paper, the mechanisms were investigated using two typical materials with severe browning phenomena, Taxus chinensis and Glycyrrhiza inflata cells. Our results illustrated that the browning is attributed to a physiological enzymatic reaction, and phenolic biosynthesis regulated by sugar plays a decisive role in the browning. Furthermore, to confirm the specific compounds which participate in the enzymatic browning reaction, transcriptional profile and metabolites of T. chinensis cells, and UV scanning and high-performance liquid chromatography-mass spectrometry (HPLC-MS) profile of the browning compounds extracted from the brown-turned medium were analyzed, flavonoids derived from phenylpropanoid pathway were found to be the main compounds, and myricetin and quercetin were deduced to be the main substrates of the browning reaction. Inhibition of flavonoid biosynthesis can prevent the browning occurrence, and the browning is effectively controlled via blocking flavonoid biosynthesis by gibberellic acid (GA3 ) as an inhibitor, which further confirms that flavonoids mainly contribute to the browning. On the basis above, a model elucidating enzymatic browning mechanisms in plant cell cultures was put forward, and effective control approaches were presented.


Assuntos
Catecol Oxidase/metabolismo , Glycyrrhiza/fisiologia , Fenóis/metabolismo , Células Vegetais/fisiologia , Taxus/fisiologia , Reatores Biológicos , Catecol Oxidase/genética , Catecol Oxidase/isolamento & purificação , Técnicas de Cultura de Células , Permeabilidade da Membrana Celular , Flavonoides/isolamento & purificação , Flavonoides/metabolismo , Glycyrrhiza/química , Glycyrrhiza/enzimologia , Reação de Maillard , Oxigênio/metabolismo , Fenóis/isolamento & purificação , Células Vegetais/química , Células Vegetais/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Quercetina/isolamento & purificação , Quercetina/metabolismo , Taxus/química , Taxus/enzimologia , Técnicas de Cultura de Tecidos
18.
Surgery ; 159(2): 602-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26387788

RESUMO

BACKGROUND: With the diverse origin of neointimal cells, previous studies have documented differences of neointimal cell lineage composition across models, but the animal-to-animal difference has not attracted much attention, although the cellular heterogeneity may impact neointimal growth and its response to therapeutic interventions. METHODS: R26R(+);Myh11-CreER(+), and R26R(+);Scl-CreER(+) mice were used to attach LacZ tags to the preexisting smooth muscle cells (SMCs) and endothelial cells (ECs), respectively. Neointimal lesions were created via complete ligation of the common carotid artery (CCA) and transluminal injury to the femoral artery (FA). RESULTS: LacZ-tagged SMCs were physically relocated from media to neointima and changed to a dedifferentiated phenotype in both CCA and FA lesions. The content of SMCs in the neointimal tissue, however, varied widely among specimens, ranging from 5 to 70% and 0 to 85%, with an average at low levels of 27% and 29% in CCA (n = 15) and FA (n = 15) lesions, respectively. Bone marrow cells, although able to home to the injured arteries, did not differentiate fully into SMCs after either type of injury. Preexisting ECs were located in the subendothelial region and produced mesenchymal marker α-actin, indicating endothelial-mesenchymal transition (EndoMT); however, EC-derived cells represented only 7% and 3% of the total neointimal cell pool of CCA (n = 7) and FA (n = 7) lesions, respectively. ECs located on the luminal surface exhibited little evidence of EndoMT. CONCLUSION: Neointimal hyperplasia proceeds with a wide range of variation in its cellular composition between individual lesions. Relative to ECs, SMCs are major contributors to the lesion-to-lesion heterogeneity in neointimal cell lineage composition.


Assuntos
Artéria Carótida Primitiva/fisiopatologia , Células Endoteliais/fisiologia , Artéria Femoral/fisiopatologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Neointima/fisiopatologia , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Acta Neuropathol Commun ; 3: 72, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26566997

RESUMO

INTRODUCTION: Transgenic overexpression of amyloid precursor protein (APP) genes that are either entirely human in sequence or have humanized Aß sequences can produce Alzheimer-type amyloidosis in mice, provided the transgenes also encode mutations linked to familial Alzheimer's Disease (FAD). Although transgenic mice have been produced that overexpress wild-type mouse APP, no mice have been generated that express mouse APP with FAD mutations. Here we describe two different versions of such mice that produce amyloid deposits consisting of entirely of mouse Aß peptides. One line of mice co-expresses mouse APP-Swedish (moAPPswe) with a human presenilin exon-9 deleted variant (PS1dE9) and another line expresses mouse APP-Swedish/Indiana (APPsi) using tetracycline-regulated vectors (tet.moAPPsi). RESULTS: Both lines of mice that produce mouse Aß develop amyloid deposits, with the moAPPswe/PS1dE9 mice developing extracellular compact, cored, neuritic deposits that primarily localize to white matter tracts and meningial layers, whereas the tet.moAPPsi mice developed extracellular diffuse cortical/hippocampal deposits distributed throughout the parenchyma. CONCLUSIONS: These findings demonstrate that murine Aß peptides have the capacity to produce amyloid deposits that are morphologically similar to deposits found in human AD provided the murine APP gene harbors mutations linked to human FAD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Regulação da Expressão Gênica/genética , Placa Amiloide/metabolismo , Presenilina-1/genética , Fatores Etários , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neuroblastoma/patologia , Presenilina-1/metabolismo
20.
PLoS One ; 9(11): e113668, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25422894

RESUMO

Capparis spinosa is one of the most important eremophytes among the medicinal plants, and continued destruction of these plants poses a major threat to species survival. The development of methods to extract compounds, especially those of medicinal value, without harvesting the whole plant is an issue of considerable socioeconomic importance. On the basis of an established system for culture of suspension cells and callus in vitro, Gas Chromatograph-Mass Spectrometer (GC-MS) was used for the volatile oil composition analyzing in seed, fruit, suspension cells and callus. Fatty acids were the major component, and the highest content of alkanes was detected in seed, with <1.0% in suspension cells and callus. Esters, olefins and heterocyclic compounds were significantly higher in fruit than in the other materials. The content of acid esters in the suspension cells and callus was significantly higher than in seed and fruit. This indicated that the suspension cells and callus could be helpful for increasing the value of volatile oil and replacing seeds and fruit partially as a source of some compounds of the volatile oil and may also produce some new medical compounds. The above results give valuable information for sustainable use of C. spinosa and provide a foundation for use of the C. spinosa suspension cells and callus as an ongoing medical resource.


Assuntos
Capparis/química , Sementes/química , Capparis/embriologia , Cromatografia Gasosa-Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA