Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140767, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992903

RESUMO

Given its wide distribution in the environment and latent toxic effects, 1,3,6,8-tetrabromo-9H-carbazole (1368-BCZ) is an emerging concern that has gained increasing attention globally. 1368-BCZ exposure is reported to have potential cardiovascular toxicity. Although atherosclerosis is a cardiovascular disease and remains a primary cause of mortality worldwide, no evidence has been found regarding the impact of 1368-BCZ on atherosclerosis. Therefore, we aimed to explore the deleterious effects of 1368-BCZ on atherosclerosis and the underlying mechanisms. Serum samples from 1368-BCZ-treated atherosclerotic model mice were subjected to metabolomic profiling to investigate the adverse influence of the pollutant. Subsequently, the molecular mechanism associated with the metabolic pathway of atherosclerotic mice that was identified following 1368-BCZ exposure was validated in vitro. Serum metabolomics analysis revealed that 1368-BCZ significantly altered the tricarboxylic acid cycle, causing a disturbance in energy metabolism. In vitro, we further validated general markers of energy metabolism based on metabolome data: 1368-BCZ dampened adenosine triphosphate (ATP) synthesis and increased reactive oxygen species (ROS) production. Furthermore, blocking the aryl hydrocarbon receptor (AhR) reversed the high production of ROS induced by 1368-BCZ. It is concluded that 1368-BCZ decreased the ATP synthesis by disturbing the energy metabolism, thereby stimulating the AhR-mediated ROS production and presumably causing aggravated atherosclerosis. This is the first comprehensive study on the cardiovascular toxicity and mechanism of 1368-BCZ based on rodent models of atherosclerosis and integrated with in vitro models.


Assuntos
Aterosclerose , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Camundongos , Espécies Reativas de Oxigênio , Metabolômica , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Trifosfato de Adenosina
2.
Poult Sci ; 102(11): 102936, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37708764

RESUMO

The aim of this study was to investigate the effects of adding tea tree oil (TTO) in the basal diet on growth performance, immune function, and intestinal function in broilers. This study utilized 1,650 one-day-old broilers with good health and similar body weight. Subjects were randomized into 5 groups with 6 replicates each: the control group (CON, basal diet), positive control group (PCG, basal diet + 100 mg/kg oregano oil in diet), low-dose TTO group (TTO-L, 50 mg/kg TTO added in the basal diet), medium-dose TTO group (TTO-M, 100 mg/kg TTO added in the basal diet), and high-dose TTO group (TTO-H, 200 mg/kg TTO added in the basal diet). The whole test period lasted 28 d. The results showed that the broilers fed with TTO supplemented diet had significantly higher body weight and average daily gain (ADG) (P = 0.013), and had a lower feed conversion ratio (F/G) (P = 0.010) throughout the trial period. The index of thymus in TTO-M increased significantly compared to CON (P = 0.015) on d 28. On d 14 and 28, C3, IFN-γ, TNF-α, and IL-2 levels in TTO-L serum were significantly increased (P < 0.001); the 3 test groups supplemented with TTO had significantly higher titers of avian influenza H9 subtype in their serum (P < 0.05). Tea tree oil supplement in the diet also had a positive and significant effect on the intestinal morphology of broilers throughout the experiment (P < 0.05). These results indicate that TTO has the ability to promote broiler growth, regulate immunity, and improve intestinal morphology. The proposed dosage of adding 50 mg/kg in broiler basal diets provides a theoretical basis for its subsequent use in livestock feeds.


Assuntos
Óleo de Melaleuca , Animais , Óleo de Melaleuca/farmacologia , Galinhas/fisiologia , Suplementos Nutricionais , Dieta/veterinária , Peso Corporal , Imunidade , Ração Animal/análise
3.
Environ Int ; 134: 105193, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31775093

RESUMO

Dioxin exposure is reported to affect nervous system development and increase the risk of neurodegenerative diseases. Generally, dioxin exerts its neurotoxicity via aryl hydrocarbon receptor (AhR). Neurofilament (NF) light (NFL) protein is a biomarker for both neuronal differentiation and neurodegeneration and its expression is controlled by the mitogen-activated protein kinase (MAPK) pathway. However, the effects of dioxin on NFL expression and involved mechanisms are incompletely understood. We aimed to investigate the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on NFL expression and elucidate the underlining signaling pathways and their potential crosstalk, specifically between MAPK and AhR pathway. We employed primary cultured rat cortical neurons to evaluate the effect of TCDD exposure on NFL expression. We also used nerve growth factor (NGF)-treated PC12 cells with specific inhibitors to investigate the involvement of and potential crosstalk between the MAPK pathway and the AhR pathway in mediating the effects of TCDD on NFL expression. After TCDD exposure, NFL mRNA and protein levels were upregulated in cultured neurons. NFL protein was preferentially found in the cell body compared with neurites of the cultured neurons. In PC12 cells, TCDD enhanced both NGF-induced NFL expression and phosphorylation of ERK1/2 and p38. The addition of MAPK-pathway inhibitors (PD98059 and SB230580) partially blocked the TCDD-induced NFL upregulation. CH223191, an AhR antagonist, reversed the upregulation of NFL and phosphorylation of ERK1/2 and p38 induced by TCDD. This study demonstrated TCDD-induced upregulation of NFL in cultured neurons, with protein retained in the cell body. TCDD action was dependent on activation of AhR and MAPK, while crosstalk was found between these two signaling pathways.


Assuntos
Regulação para Cima , Animais , Filamentos Intermediários , Proteínas Quinases Ativadas por Mitógeno , Neurônios , Células PC12 , Dibenzodioxinas Policloradas , Ratos , Receptores de Hidrocarboneto Arílico , Transdução de Sinais
4.
Environ Pollut ; 246: 141-147, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30537652

RESUMO

Dechlorane 602 (Dec 602), a chlorinated flame retardant, has been widely detected in different environmental matrices and biota. However, toxicity data for Dec 602 seldom have been reported. A metabolomics study based on ultra-high performance liquid chromatography coupled with ion trap time-of-flight mass spectrometry was employed to study the urine and sera metabolic profiles of mice administered with Dec 602 (0, 0.001, 0.1, and 10 mg/kg body weight per day) for 7 days. A significant difference in metabolic profiling was observed between the Dec 602 treated group and the control group by multivariate analysis, which directly reflected the metabolic perturbations caused by Dec 602. The metabolomics analyses of urine from Dec 602-exposed animals exhibited an increase in the levels of thymidine and tryptophan as well as a decrease in the levels of tyrosine, 12,13-dihydroxy-9Z-octadecenoic acid, 2-hydroxyhexadecanoic acid and cuminaldehyde. The metabolomics analyses of sera showed a decrease in the levels of kynurenic acid, daidzein, adenosine, xanthurenic acid and hypoxanthine from Dec 602-exposed animals. These findings indicated Dec 602 induced disturbance in phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan metabolism, tyrosine metabolism, pyrimidine metabolism, purine metabolism, ubiquinone and other terpenoid-quinone biosynthesis; phenylalanine metabolism and aminoacyl-tRNA biosynthesis. Significant alterations of immune and neurotransmitter-related metabolites (tyrosine, tryptophan, kynurenic acid, and xanthurenic acid) suggest that the toxic effects of Dec 602 may contribute to its interactions with the immune and neuronal systems. This study demonstrated that the UHPLC-ESI-IT-TOF-MS-based metabolomic approach can obtain more specific insights into the potential toxic effects of Dec 602 at molecular level.


Assuntos
Cromatografia Líquida de Alta Pressão , Biomarcadores Ambientais/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Hidrocarbonetos Clorados/toxicidade , Espectrometria de Massas , Metaboloma/efeitos dos fármacos , Compostos Policíclicos/toxicidade , Animais , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Camundongos , Análise Multivariada
5.
Environ Pollut ; 235: 965-973, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29751400

RESUMO

Dioxin-induced toxicities that affect the development of the motor system have been proposed since many years. However, cellular evidence and the molecular basis for the effects are limited. In this study, a cultured mouse myoblast cell line, C2C12, was utilized to examine the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on myogenic differentiation and expression of acetylcholinesterase (AChE), a neuromuscular transmission-related gene. The results showed that TCDD exposure at 10-10 M repressed the myotube formation of C2C12 cells by disturbing the fusion process and suppressing the expression of myosin heavy chain, a myobute structural protein, and not by induction of cytotoxicity. Furthermore, TCDD dose dependently suppressed the transcriptional expression and enzymatic activity of AChE during the myogenic differentiation, particularly in the middle stage. However, the administration of aryl hydrocarbon receptor antagonists, CH223191 and alpha-naphthoflavone, did not completely reverse the TCDD-induced downregulation of muscular AChE during myogenic differentiation. These findings suggest that low dose exposure to dioxin may result in disturbances of muscle differentiation and neuromuscular transmission.


Assuntos
Substâncias Perigosas/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Animais , Compostos Azo , Benzoflavonas , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Camundongos , Pirazóis , Receptores de Hidrocarboneto Arílico/metabolismo
6.
Environ Pollut ; 237: 508-514, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29522993

RESUMO

The aryl hydrocarbon receptor (AhR) plays an important role in mediating dioxins toxicity. Currently, genes of P450 families are major research interests in studies on AhR-mediated gene alterations caused by dioxins. Genes related to other metabolic pathways or processes may be also responsive to dioxin exposures. Amino acid transporter B0AT1 (encoded by SLC6A19) plays a decisive role in neutral amino acid transport which is present in kidney, intestine and liver. However, effects of dioxins on its expression are still unknown. In the present study, we focused on the effects of dioxin and dioxin-like compounds on SLC6A19 expression in HepG2 cells. We identified SLC6A19 as a novel putative target gene of AhR activation in HepG2 cells. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) increased the expression of SLC6A19 in time- and concentration-dependent manners. Using AhR antagonist CH223191 and/or siRNA assays, we demonstrated that certain AhR agonists upregulated SLC6A19 expression via AhR, including TCDD, 1,2,3,7,8-pentachlorodibenzo-p-dioxin (1,2,3,7,8-PeCDD), 2,3,4,7,8- pentachlorodibenzofuran (2,3,4,7,8-PeCDF) and PCB126. In addition, the expression of B0AT1 was also significantly induced by TCDD in HepG2 cells. Our study suggested that dioxins might affect the transcription and translation of SLC6A19 in HepG2 cells, which might be a novel putative gene to assess dioxins' toxicity in amino acid transport and metabolism in liver.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Dioxinas/toxicidade , Poluentes Ambientais/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Compostos Azo , Carcinoma Hepatocelular , Dioxinas/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Pirazóis , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
7.
Environ Sci Technol ; 52(5): 2926-2933, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437390

RESUMO

Airborne persistent toxic substances are associated with health impacts resulting from air pollution, for example, dioxins, dioxin-like polychlorinated biphenyls, and certain polycyclic aromatic hydrocarbons (PAHs), which activate aryl hydrocarbon receptors (AhR) and thereby produce adverse outcomes. Thus, a bioassay for evaluating AhR activation is required for risk assessment of ambient-air samples, and for this purpose, we developed a new and sensitive recombinant mouse hepatoma cell line, CBG2.8D, in which a novel luciferase-reporter plasmid containing two copies of a newly designed dioxin-responsive domain and a minimal promoter derived from a native gene were integrated. The minimal detection limit for 2,3,7,8-tetrachlorodibenzo- p-dioxin with this assay system was 0.1 pM. We used CBG2.8D to determine dioxin levels in 45 ambient-air samples collected in Beijing. The measured bioanalytical equivalent (BEQ) values were closely correlated with the toxic equivalent values obtained from chemical analysis. In haze ambient-air samples, the total activation of aryl hydrocarbon receptors (TAA) was considerably higher than the BEQ of dioxin-rich fractions, according to the results of the cell-based bioassay. Notably, the haze samples contained abundant amounts of PAHs, whose relative toxicity equivalent was correlated with the TAA; this finding suggests that PAHs critically contribute to the AhR-related biological impacts of haze ambient-air samples.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Animais , Pequim , Bioensaio , Camundongos , Receptores de Hidrocarboneto Arílico
8.
Chem Biol Interact ; 259(Pt B): 282-285, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27502150

RESUMO

PC12 is a well studied cell model for neuronal differentiation. AChE is also considered as a marker for neuronal differentiation. In this study, we detected the change of AChE activity during the NGF induced differentiation of PC 12 cells, and targeted on the ratio of the activity of AChE on the cell surface, and found that NGF mainly increased the intracellular AChE activity. Dioxin is a kind of persistent organic pollutants which have extreme impact on human health and widely distributed all over the world. Recently, AChE was reported as a target of the toxicity of dioxin. Here we investigated the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on AChE activity in the PC12 cells, and found that at the later stage of differentiation, TCDD could decrease the AChE activity. This down regulation might not related to transcriptional regulation.


Assuntos
Acetilcolinesterase/metabolismo , Fator de Crescimento Neural/farmacologia , Dibenzodioxinas Policloradas/toxicidade , Acetilcolinesterase/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células PC12 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
9.
Environ Health Perspect ; 124(9): 1406-13, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27081854

RESUMO

BACKGROUND: Although the chlorinated flame retardant Dechlorane (Dec) 602 has been detected in food, human blood, and breast milk, there is limited information on potential health effects, including possible immunotoxicity. OBJECTIVES: We determined the immunotoxic potential of Dec 602 in mice by examining the expression of phenotypic markers on thymocyte and splenic lymphocyte subsets, Th1/Th2 transcription factors, and the production of cytokines and antibodies. METHODS: Adult male C57BL/6 mice were orally exposed to environmentally relevant doses of Dec 602 (1 and 10 µg/kg body weight per day) for 7 consecutive days. Thymocyte and splenic CD4 and CD8 subsets and splenocyte apoptosis were examined by flow cytometric analysis. Cytokine expression was measured at both the mRNA and the protein levels. Levels of the transcription factors Th1 (T-bet and STAT1) and Th2 (GATA3) were determined using quantitative real-time polymerase chain reaction (qPCR). Serum levels of immunoglobulins IgG1, IgG2a, IgG2b and IgE were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Splenic CD4+ and CD8+ T cell subsets were decreased compared with vehicle controls, and apoptosis was significantly increased in splenic CD4+ T cells. Expression (mRNA and protein) of Th2 cytokines [interleukin (IL)-4, IL-10, and IL-13] increased, and that of Th1 cytokines [IL-2, interferon (IFN)-γ and tumor necrosis factor (TNF)-α] decreased. The Th2 transcriptional factor GATA3 increased, whereas the Th1 transcriptional factors T-bet and STAT1 decreased. As additional indicators of the Th2-Th1 imbalance, production of IgG1 was significantly increased, whereas IgG2a was reduced. CONCLUSIONS: To our knowledge, we are the first to report evidence of the effects of Dec 602 on immune function in mice, with findings indicating that Dec 602 exposure favored Th2 responses and reduced Th1 function. CITATION: Feng Y, Tian J, Xie HQ, She J, Xu SL, Xu T, Tian W, Fu H, Li S, Tao W, Wang L, Chen Y, Zhang S, Zhang W, Guo TL, Zhao B. 2016. Effects of acute low-dose exposure to the chlorinated flame retardant dechlorane 602 and Th1 and Th2 immune responses in adult male mice. Environ Health Perspect 124:1406-1413; http://dx.doi.org/10.1289/ehp.1510314.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Poluentes Ambientais/toxicidade , Retardadores de Chama/toxicidade , Hidrocarbonetos Clorados/toxicidade , Sistema Imunitário/efeitos dos fármacos , Compostos Policíclicos/toxicidade , Linfócitos T/efeitos dos fármacos , Equilíbrio Th1-Th2/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
10.
J Environ Sci (China) ; 39: 165-174, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26899655

RESUMO

Aryl hydrocarbon receptor (AhR), a ligand-dependent nuclear receptor, is involved in a diverse spectrum of biological and toxicological effects. Due to the lack of three dimensional (3D) crystal or nuclear magnetic resonance structure, the mechanisms of these complex effects of AhR remain to be unclear. Also, commercial monoclonal antibodies (mAbs) against human AhR protein (hAhR), as alternative immunological tools, are very limited. Thus, in order to provide more tools for further studies on hAhR, we prepared two mAbs (1D6 and 4A6) against hAhR. The two newly generated mAbs specifically bound to amino acids 484-508 (located in transcription activation domain) and amino acids 201-215 (located in Per-ARNT-Sim domain) of hAhR, respectively. These epitopes were new as compared with those of commercial mAbs. The mAbs were also characterized by enzyme-linked immunosorbent assay, western blot, immunoprecipitation and indirect immunofluorescence assay in different cell lines. The results showed that the two mAbs could recognize the linearized AhRs in six different human cell lines and a rat hepatoma cell line, as well as the hAhR with native conformations. We concluded that the newly generated mAbs could be employed in AhR-based bioassays for analysis of environmental contaminants, and held great potential for further revealing the spatial structure of AhR and its biological functions in future studies.


Assuntos
Anticorpos Monoclonais/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Linhagem Celular Tumoral , Epitopos/imunologia , Humanos , Camundongos , Ratos , Receptores de Hidrocarboneto Arílico/química
11.
Environ Sci Technol ; 49(16): 9518-31, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26079192

RESUMO

The aryl hydrocarbon receptor (AhR) is a highly evolutionary conserved, ligand-activated transcription factor that is best known to mediate the toxicities of dioxins and dioxin-like compounds. Phenotype of AhR-null mice, together with the recent discovery of a variety of endogenous and plant-derived ligands, point to the integral roles of AhR in normal cell physiology, in addition to its roles in sensing the environmental chemicals. Here, we summarize the current knowledge about AhR signaling pathways, its ligands and AhR-mediated effects on cell specialization, host defense and detoxification. AhR-mediated health effects particularly in liver, immune, and nervous systems, as well as in tumorgenesis are discussed. Dioxin-initiated embryotoxicity and immunosuppressive effects in fish and birds are reviewed. Recent data demonstrate that AhR is a convergence point of multiple signaling pathways that inform the cell of its external and internal environments. As such, AhR pathway is a promising potential target for therapeutics targeting nervous, liver, and autoimmune diseases through AhR ligand-mediated interventions and other perturbations of AhR signaling. Additionally, using available laboratory data obtained on animal models, AhR-centered adverse outcome pathway analysis is useful in reexamining known and potential adverse outcomes of specific or mixed compounds on wildlife.


Assuntos
Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Animais , Dioxinas/efeitos adversos , Evolução Molecular , Saúde , Humanos , Ligantes
12.
Environ Health Perspect ; 121(5): 613-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23426015

RESUMO

BACKGROUND: Deficits in cognitive functioning have been reported in humans exposed to dioxins and dioxin-like compounds. Evidence suggests that dioxins induce cholinergic dysfunction mediated by hypothyroidism. However, little is known about direct effects of dioxins on the cholinergic system. OBJECTIVES: We investigated the action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on acetylcholinesterase (AChE), a key enzyme in cholinergic neurotransmission. METHODS: We used SK-N-SH human-derived neuronal cells to evaluate the effect of dioxin exposure on AChE. RESULTS: We consistently found a significant decrease in enzymatic activity of AChE in cultured neurons treated with TCDD. We also found that, unlike organophosphate pesticides that directly act on the catalytic center of AChE, the suppressive effect of dioxin was through transcriptional regulation. The addition of CH223191, an inhibitor of the aryl hydrocarbon receptor (AhR)-dependent pathway, counteracted the TCDD-induced suppression of AChE, suggesting involvement of the AhR-dependent pathway. The existence of putative dioxin-responsive element (DRE) consensus sequences in the human ACHE promoter region further supported this hypothesis. Consistent with the absence of DRE elements in mouse or rat ACHE promoter regions, suppression of AChE by TCDD did not occur in rat neuronal cells, indicating a potential species-specific effect. CONCLUSIONS: In SK-N-SH cells, dioxin suppressed the activity of neuronal AChE via AhR-mediated transcriptional down-regulation. This is the first study to report direct interference by dioxin with the cholinergic neurotransmission system.


Assuntos
Acetilcolinesterase/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Compostos Azo/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Neurônios/enzimologia , Células PC12 , Pirazóis/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA