Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Clin Transl Med ; 14(8): e1815, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39183480

RESUMO

BACKGROUND: Extrachromosomal circular DNAs (eccDNAs), a type of double-stranded DNAs (dsDNAs) that facilitate the activation of the DNA sensing machinery, have been implicated in the progression and prognosis of various diseases. While the roles of eccDNAs remain contentious, their significance in diffuse large B-cell lymphoma (DLBCL) has not been reported. METHODS: Circular DNA sequencing (circle-seq) was used to demonstrate the expression profile of eccDNAs in DLBCL, and atomic force microscopy to validate the presence of eccDNAs. CCK-8 and scRNA-seq techniques were employed to uncover the activation of eccDNA in the STING pathway, leading to enhanced cell proliferation. Chemotherapeutic drugs were used to test the hypothesis that DNA damage induces the production of eccDNA, thereby activating the STING pathway independent of cGAS. GEO databases were used for verification of the prognosis of the eccDNA-related genes, and animal models were used to investigate the synergistic effects of DNA damage therapy in combination with STING inhibitors on anti-tumour responses. RESULTS: EccDNAs were widely expressed in DLBCL and associated with the prognosis of patients. Elevated abundance of eccDNAs promoted the progression of DLBCL. Chemotherapeutic drugs-induced DNA damage triggered the generation of eccDNAs, resulting in the activation of the STING signalling in a cGAS-independent manner. Moreover, inhibition of STING exerted a synergistic anti-tumour effect with cisplatin. CONCLUSIONS: EccDNAs induced by DNA damage exert an oncogenic role in DLBCL via activating the STING signalling independently of cGAS. This finding offers a rational therapeutic strategy combining chemotherapy with targeting STING. HIGHLIGHTS: EccDNAs induced by DNA damage exert an oncogenic role in DLBCL via activating the STING signalling independently of cGAS. The combined treatment of chemotherapeutic drugs with STING inhibitor significantly delayed the tumor progression, providing new insights into the therapeutic strategy for patients with DLBCL, particularly the relapsed and/or refractory (R/R) ones.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas de Membrana , Transdução de Sinais , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/genética , Animais , Camundongos , Multiômica
2.
BMC Cancer ; 24(1): 399, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561690

RESUMO

BACKGROUND: Podoplanin (PDPN) expressed on tumour cells interacts with platelet C-type lectin-like receptor 2 (CLEC-2). This study aimed to investigate the role of the PDPN-platelet CLEC-2 interaction in melanoma pulmonary metastasis. METHODS: Murine melanoma B16-F0 cells, which have two populations that express podoplanin, were sorted by FACS with anti-podoplanin staining to obtain purified PDPN + and PDPN- B16-F0 cells. C57BL/6J mice transplanted with CLEC-2-deficient bone marrow cells were used for in vivo experiments. RESULTS: The in vivo data showed that the number of metastatic lung nodules in WT mice injected with PDPN + cells was significantly higher than that in WT mice injected with PDPN- cells and in WT or CLEC-2 KO mice injected with PDPN- cells. In addition, our results revealed that the platelet Syk-dependent signalling pathway contributed to platelet aggregation and melanoma metastasis. CONCLUSIONS: Our study indicates that the PDPN-CLEC-2 interaction promotes experimental pulmonary metastasis in a mouse melanoma model. Tumour cell-induced platelet aggregation mediated by the interaction between PDPN and CLEC-2 is a key factor in melanoma pulmonary metastasis.


Assuntos
Neoplasias Pulmonares , Melanoma , Animais , Camundongos , Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Agregação Plaquetária
3.
Genes Genomics ; 46(4): 399-408, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38319456

RESUMO

BACKGROUND: Sweet osmanthus (Osmanthus fragrans) is an ornamental evergreen tree species in China, whose flowers are sensitive to ethylene. The synthesis of ethylene is controlled by key enzymes and restriction enzymes, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), which are encoded by multigene families. However, the key synthase responsible for ethylene regulation in O. fragrans is still unknown. OBJECTIVE: This study aims to screen the key ethylene synthase genes of sweet osmanthus flowers in response to ethylene regulation. METHODS: In this study, we used the ACO and ACS sequences of Arabidopsis thaliana to search for homologous genes in the O. fragrans petal transcriptome database. These genes were also analyzed bioinformatically. Finally, the expression levels of O. fragrans were compared before and after senescence, as well as after ethephon and silver nitrate treatments. RESULTS: The results showed that there are five ACO genes and one ACS gene in O. fragrans transcriptome database, and the phylogenetic tree revealed that the proteins encoded by these genes had high homology to the ACS and ACO proteins in plants. Sequence alignment shows that the OfACO1-5 proteins have the 2OG-Fe(II) oxygenase domain, while OfACS1 contains seven conserved domains, as well as conserved amino acids in transaminases and glutamate residues related to substrate specificity. Expression analysis revealed that the expression levels of OfACS1 and OfACO1-5 were significantly higher at the early senescence stage compared to the full flowering stage. The transcripts of the OfACS1, OfACO2, and OfACO5 genes were upregulated by treatment with ethephon. However, out of these three genes, only OfACO2 was significantly downregulated by treatment with AgNO3. CONCLUSION: Our study found that OfACO2 is an important synthase gene in response to ethylene regulation in sweet osmanthus, which would provide valuable data for further investigation into the mechanisms of ethylene-induced senescence in sweet osmanthus flowers.


Assuntos
Compostos Organofosforados , Senescência Vegetal , Nitrato de Prata , Nitrato de Prata/farmacologia , Filogenia , Etilenos/farmacologia , Etilenos/metabolismo
4.
Biomater Sci ; 11(12): 4298-4307, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37063056

RESUMO

Poor management and disposal of plastic materials and the accumulation of microplatics in the environment and foods are an issue of increasing public concern. The current understanding of the implications of microplastics for human health has been limited to the bioeffect of individual exposure. In the bigger view of microplastic contamination, however, toxic compounds, including antibiotics, harbored on active microplastics can be collectively transported through food chains, raising questions about the effect of their combined exposure on human health. By employing a mouse model for human physiology, we discovered that a concurrent exposure to the major types of antibiotics and microplastics, namely sulfamethoxazole (SMZ) and polystyrene microplastics, respectively, would result in evident accumulation in detoxification organs; specifically, liver could amass 41.70 µg kg-1 of SMZ, while 3.83% of microplastics was accumulated in the kidney. Insights into the occurrence of liver histopathological changes (e.g., amyloidosis and necrocytosis) revealed that compared with the individual treatment of SMZ, treatment by microplastic-contaminated SMZ elicited increases in the levels of malonaldehyde and NF-κß by 174% and 104%, respectively; while the activities of antioxidases investigated were depressed by up to 22% upon co-exposure. It is suggested that SMZ enriched on active microplastic surfaces causes enhanced hepatic damage. Profiling of the gene expression clarified the correlation of the exacerbated oxidative and inflammatory damages in the liver with the overexpression of Nrf2 to dysregulate the Keap1-Nrf2 pathway. This study acts as a reminder about the complexity of contamination and raises awareness of health issues that microplastics could cause public health through liver diseases.


Assuntos
Microplásticos , Plásticos , Humanos , Animais , Camundongos , Microplásticos/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch , Antibacterianos/efeitos adversos , Fator 2 Relacionado a NF-E2 , Fígado , Sulfametoxazol/farmacologia , Estresse Oxidativo , Mamíferos
5.
Front Plant Sci ; 13: 981086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330274

RESUMO

Petal color in Zinnia elegans is characterized mainly by anthocyanin accumulation. The difference in the content of anthocyanins, especially cyanidins, affects petal coloration in Z. elegans, but the underlying regulatory mechanism remains elusive. Here, we report one R2R3-MYB transcription factor from subgroup 6, ZeMYB9, acting as a positive regulator of anthocyanin accumulation in Z. elegans. Up-regulated expression of ZeMYB9 and flavonoid 3'-hydroxylase gene (ZeF3'H) was detected in the cultivar with higher cyanidin content. ZeMYB9 could specifically activate the promoter of ZeF3'H, and over-expression of ZeMYB9 induces much greater anthocyanin accumulation and higher expression level of anthocyanin biosynthetic genes in both petunia and tobacco. And then, ZeMYB9 was demonstrated to interact with ZeGL3, a bHLH transcription factor belonging to IIIf subgroup. Promoter activity of ZeF3'H was significantly promoted by co-expressing ZeMYB9 and ZeGL3 compared with expressing ZeMYB9 alone. Moreover, transient co-expression of ZeMYB9 and ZeGL3 induced anthocyanin accumulation in tobacco leaves. Our results suggest that ZeMYB9 could enhance cyanidin synthesis and regulate petal color in Z. elegans though activating the expression of ZeF3'H, by itself or interacting with ZeGL3.

6.
Chin Med J (Engl) ; 135(8): 920-929, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35730371

RESUMO

BACKGROUND: NOTCH1 mutation is an essential molecular biologic aberration in chronic lymphocytic leukemia (CLL). CLL patients with NOTCH1 mutation have shown an unfavorable survival and a poor response to chemoimmunotherapy. This study aims to present the mechanisms of adverse prognosis caused by NOTCH1 mutation from the perspective of the splicing factor heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1). METHODS: The microarray data in Gene Expression Omnibus datasets were analyzed by bioinformatics and the function of hnRNPA1 was checked by testing the proliferation and apoptosis of CLL-like cell lines. Afterward, quantitative reverse transcription-polymerase chain reaction and Western blotting were applied to explore the relationship among NOTCH1, c-Myc, and hnRNPA1. RESULTS: RNA splicing was found to play a vital part in NOTCH1-mutated CLL cells; hence, hnRNPA1 was selected as the focus of this study. Higher expression of hnRNPA1 validated in primary NOTCH1-mutated CLL samples could promote proliferation and inhibit apoptosis in CLL. The expression of hnRNPA1 increased when NOTCH1 signaling was activated by transfection with NOTCH1 intracellular domain (NICD)-overexpressed adenovirus vector and declined after NOTCH1 signaling was inhibited by NOTCH1-shRNA. Higher expression of c-Myc was observed in NICD-overexpressed cells and hnRNPA1 expression was downregulated after applying c-Myc inhibitor 10058-F4. Moreover, in NICD-overexpressed cells, hnRNPA1 expression decreased through c-Myc inhibition. CONCLUSION: Overexpression of c-Myc-dependent hnRNPA1 could promote proliferation and inhibit apoptosis in NOTCH1-mutated CLL cells, which might partly account for the poor prognosis of patients with NOTCH1 mutation.


Assuntos
Leucemia Linfocítica Crônica de Células B , Apoptose/genética , Proliferação de Células/genética , Ribonucleoproteína Nuclear Heterogênea A1/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Mutação/genética , Receptor Notch1/genética
7.
Analyst ; 147(6): 1099-1105, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35226027

RESUMO

It has been reported that microplastics exist ubiquitously in aquatic and terrestrial environments. Microplastic surveys on diverse daily foods with high consumption possibly containing microplastics have essential implications in clarifying the contamination routes, health risk assessment, and thereby preventing food pollution. Given the dependence of microplastic pollution on the regional environment, production and transportation, it further remains an open question on the number, size distribution and type of microplastics in foods from different countries worldwide. Here, we show that daily drinks produced worldwide, including beer, mineral water and tea, are all polluted with microplastics without exception. The number of microplastics investigated in this work lies in the range of 20-80 mL-1 for the beers, 10 mL-1 for the bottled mineral water, and 200-500 g-1 for the tea leaves. Quasi-spherical particles and irregular fragments dominate the shape of microplastics in beer and mineral water, whereas tea leaves carry numerous microplastic fibers. By identification through Raman spectroscopy, we observed the presence of polystyrene (PS) and polypropylene (PP) microplastics in beers, PP in bottled mineral water, and polyethylene (PE) and polyethylene terephthalate (PET) in tea leaves. Possible contamination sources include raw materials, atmosphere, and tools and containers that release microplastics. Given the facile adsorption of heavy metals and antibiotics to microplastics in beverages, public concern may arise regarding the accumulation of microplastics through the food chain and their synergetic harmful effect. Thus, our results should inspire further efforts that may contribute to the elimination and removal of microplastics from foods.


Assuntos
Águas Minerais , Poluentes Químicos da Água , Cerveja , Monitoramento Ambiental , Microplásticos , Águas Minerais/análise , Plásticos , Chá , Poluentes Químicos da Água/análise
8.
Leuk Lymphoma ; 62(10): 2428-2437, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34024223

RESUMO

Molecular abnormalities are frequent in core-binding factor (CBF) AMLs, but their prognostic relevance is controversial. Sixty-two patients were retrospectively analyzed and 47 harbored at least one gene mutation with a next-generation-sequencing assay. The most common molecular mutation was KIT mutation (30.6%), followed by NRAS (24.2%) and ASXL1 (14.5%) mutations, which was associated with a higher number of bone marrow blasts (p = .049) and older age (p = .027). The survival analysis showed KIT mutation adversely affected the overall survival (OS) (p = .046). NRAS mutation was associated with inferior OS (p = .016) and RFS (p = .039). Eight patients carried co-mutations of KIT and NRAS and had worse OS (p = .012) and RFS (p = .034). The multivariate analysis showed age ≥60 years and additional chromosomal abnormalities were significant adverse factors for OS. Thus, co-mutations of KIT and NRAS were significantly associated with a poor prognosis and should be taken into account when assessing for prognostic stratification in patients with CBF-AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-kit , Idoso , Fatores de Ligação ao Core/genética , GTP Fosfo-Hidrolases/genética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação , Prognóstico , Proteínas Proto-Oncogênicas c-kit/genética , Estudos Retrospectivos
9.
J Exp Med ; 217(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645367

RESUMO

Core 1-derived mucin-type O-glycans (O-glycans) are a major component of gastric mucus with an unclear role. To address this, we generated mice lacking gastric epithelial O-glycans (GEC C1galt1-/-). GEC C1galt1-/- mice exhibited spontaneous gastritis that progressed to adenocarcinoma with ∼80% penetrance by 1 yr. GEC C1galt1-/- gastric epithelium exhibited defective expression of a major mucus forming O-glycoprotein Muc5AC relative to WT controls, which was associated with impaired gastric acid homeostasis. Inflammation and tumorigenesis in GEC C1galt1-/- stomach were concurrent with activation of caspases 1 and 11 (Casp1/11)-dependent inflammasome. GEC C1galt1-/- mice genetically lacking Casp1/11 had reduced gastritis and gastric cancer progression. Notably, expression of Tn antigen, a truncated form of O-glycan, and CASP1 activation was associated with tumor progression in gastric cancer patients. These results reveal a critical role of O-glycosylation in gastric homeostasis and the protection of the gastric mucosa from Casp1-mediated gastric inflammation and cancer.


Assuntos
Gastrite/metabolismo , Mucinas/metabolismo , Polissacarídeos/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Antígenos Glicosídicos Associados a Tumores/metabolismo , Carcinogênese/metabolismo , Caspase 1/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Glicosilação , Homeostase/fisiologia , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Muco/metabolismo , Neoplasias/metabolismo
10.
Cancer Med ; 9(3): 999-1007, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31849198

RESUMO

Immunoglobulin heavy chain variable region (IGHV) mutational status has been an important prognostic factor for chronic lymphocytic leukemia (CLL) for decades. Patients with unmutated IGHV (≥98% identity to the germline sequence) have inferior prognosis and tend to carry unfavorable genetic markers compared to those with mutated IGHV (<98% identity to the germline sequence). However, 98% as the cutoff for IGHV mutational status is a mathematical choice and remains controversial. We have previously reported distinct IGHV repertoire features between Chinese and western CLL populations. Here, we retrospectively studied 595 Chinese CLL patients to determine the best cutoff value for IGHV in Chinese CLL population. Using 1% as the interval for IGHV identity, we divided the studied cohort into seven subgroups from 95% to 100%. Briefer time to first treatment (TTFT) and overall survival (OS) were observed in cases with ≥98% compared to those with <98%, while the differences were obscure within subgroups ≥98% (98%-98.99%, 99%-99.99%, and 100%) and <98% (<94.99%, 95%-95.99%, 96%-96.99%, and 97%-97.99%). Multivariate analysis confirmed the independent prognostic value of 98% being the cutoff for IGHV identity in terms of both TTFT and OS. All the prognostic factors, including del(17p13), del(11q22.3), TP53 mutation, MYD88 mutation, NOTCH1 mutation, SF3B1 mutation, CD38, ZAP-70, Binet staging, gender, and ß2-microglobulin, were significantly different in distribution between group <98% and group ≥98%, but not among subgroups 98%-98.99%, 99%-99.99%, and 100%. In conclusion, 98% is the optimal cutoff of IGHV identity for the prognosis evaluation of Chinese CLL patients.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/mortalidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/genética , Feminino , Seguimentos , Marcadores Genéticos , Humanos , Estimativa de Kaplan-Meier , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Valores de Referência , Estudos Retrospectivos , Medição de Risco/métodos , Rituximab/uso terapêutico , Resultado do Tratamento , Adulto Jovem
12.
Aging (Albany NY) ; 11(11): 3561-3573, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152142

RESUMO

Circular RNAs (circRNAs) have recently been reported to play crucial roles in various regulatory processes and involved in cancer onset and progression. However, the potential mechanism of circRNAs in chronic lymphocytic leukemia (CLL) remains largely unknown. Here, we observed hsa_circ_0132266 (circ_0132266), a circRNA significantly decreased in the peripheral blood mononuclear cells (PBMCs) of CLL patients compared with healthy donors, could act as an endogenous sponge of hsa-miR-337-3p (miR-337-3p) and regulate its activity, which resulted in a downstream change of target-gene PML and a consequent influence on cell viability. Taken together, our data indicated the regulatory mechanism of circ_0132266 in CLL progression through circ_0132266/miR-337-3p/PML axis, suggesting that it may serve as a biomarker as well as an exploitable therapeutic target for CLL.


Assuntos
Sobrevivência Celular/fisiologia , Regulação para Baixo , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucócitos Mononucleares/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/genética , RNA Circular/genética
13.
Cell Death Differ ; 26(9): 1656-1669, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30478383

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by defective intestinal barrier integrity toward the microbiota and epithelial damage. Double cortin-like kinase 1 (Dclk1), a marker of intestinal tuft cells, can regulate tissue regenerative responses, but its role in epithelial repair during bacterial-dependent chronic colitis is unclear. We addressed this question using our recently developed mouse model of spontaneous microbiota-dependent colitis induced by mucin-type O-glycan deficiency (DKO), which recapitulates most features of human UC. We generated DKO mice lacking intestinal epithelial Dclk1 (DKO;Dclk1ΔIEC) and analyzed colitis onset and severity using clinical and histologic indices, immune responses by qPCR and immunostaining, and epithelial responses using proliferation markers and organoid culture. We found 3-4-week-old DKO;Dclk1ΔIEC mice developed worsened spontaneous colitis characterized by reduced body weight, loose stool, severe colon thickening, epithelial lesions, and inflammatory cell infiltrates compared with DKO mice. The primary defect was an impaired epithelial proliferative response during inflammation. Dclk1 deficiency also reduced inflammation-induced proliferation and growth of colon organoids ex vivo. Mechanistically, Dclk1 expression was important for inflammation-induced Cox2 expression and prostaglandin E2 (PGE2) production in vivo, and PGE2 rescued proliferative defects in Dclk1-deficient colonic organoids. Although tuft cells were expanded in both DKO and DKO;Dclk1ΔIEC relative to WT mice, loss of Dclk1 was associated with reduced tuft cell activation (i.e., proliferation) during inflammation. Similar results were found in DKO vs. DKO;Dclk1ΔIEC mice at 3-6 months of age. Our results support that tuft cells, via Dclk1, are important responders to bacterial-induced colitis by enhancing epithelial repair responses, which in turn limits bacterial infiltration into the mucosa.


Assuntos
Apoptose/genética , Colite/genética , Inflamação/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Proliferação de Células/genética , Doença Crônica/epidemiologia , Doença Crônica/prevenção & controle , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Quinases Semelhantes a Duplacortina , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
14.
Gastroenterology ; 155(5): 1608-1624, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30086262

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) produce higher levels of truncated O-glycan structures (such as Tn and sTn) than normal pancreata. Dysregulated activity of core 1 synthase glycoprotein-N-acetylgalactosamine 3-ß-galactosyltransferase 1 (C1GALT1) leads to increased expression of these truncated O-glycans. We investigated whether and how truncated O-glycans contributes to the development and progression of PDAC using mice with disruption of C1galt1. METHODS: We crossed C1galt1 floxed mice (C1galt1loxP/loxP) with KrasG12D/+; Trp53R172H/+; Pdx1-Cre (KPC) mice to create KPCC mice. Growth and progression of pancreatic tumors were compared between KPC and KPCC mice; pancreatic tissues were collected and analyzed by immunohistochemistry; immunofluorescence; and Sirius red, alcian blue, and lectin staining. We used the CRISPR/Cas9 system to disrupt C1GALT1 in human PDAC cells (T3M4 and CD18/HPAF) and levels of O-glycans were analyzed by lectin blotting, mass spectrometry, and lectin pulldown assay. Orthotopic studies and RNA sequencing analyses were performed with control and C1GALT1 knockout PDAC cells. C1GALT1 expression was analyzed in well-differentiated (n = 36) and poorly differentiated (n = 23) PDAC samples by immunohistochemistry. RESULTS: KPCC mice had significantly shorter survival times (median 102 days) than KPC mice (median 200 days) and developed early pancreatic intraepithelial neoplasias at 3 weeks, PDAC at 5 weeks, and metastasis at 10 weeks compared with KPC mice. Pancreatic tumors that developed in KPCC mice were more aggressive (more invasive and metastases) than those in KPC mice, had a decreased amount of stroma, and had increased production of Tn. Poorly differentiated PDAC specimens had significantly lower levels of C1GALT1 than well-differentiated PDACs. Human PDAC cells with knockout of C1GALT1 had aberrant glycosylation of MUC16 compared with control cells and increased expression of genes that regulate tumorigenesis and metastasis. CONCLUSIONS: In studies of KPC mice with disruption of C1galt1, we found that loss of C1galt1 promotes development of aggressive PDACs and increased metastasis. Knockout of C1galt1 leads to increased tumorigenicity and truncation of O-glycosylation on MUC16, which could contribute to increased aggressiveness.


Assuntos
Adenocarcinoma/etiologia , Galactosiltransferases/fisiologia , Neoplasias Pancreáticas/etiologia , Adenocarcinoma/secundário , Animais , Sistemas CRISPR-Cas , Carcinoma Ductal Pancreático , Proliferação de Células , Galactosiltransferases/genética , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia
15.
JCI Insight ; 3(14)2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30046013

RESUMO

Site-1 protease (S1P), encoded by MBTPS1, is a serine protease in the Golgi. S1P regulates lipogenesis, endoplasmic reticulum (ER) function, and lysosome biogenesis in mice and in cultured cells. However, how S1P differentially regulates these diverse functions in humans has been unclear. In addition, no human disease with S1P deficiency has been identified. Here, we report a pediatric patient with an amorphic and a severely hypomorphic mutation in MBTPS1. The unique combination of these mutations results in a frequency of functional MBTPS1 transcripts of approximately 1%, a finding that is associated with skeletal dysplasia and elevated blood lysosomal enzymes. We found that the residually expressed S1P is sufficient for lipid homeostasis but not for ER and lysosomal functions, especially in chondrocytes. The defective S1P function specifically impairs activation of the ER stress transducer BBF2H7, leading to ER retention of collagen in chondrocytes. S1P deficiency also causes abnormal secretion of lysosomal enzymes due to partial impairment of mannose-6-phosphate-dependent delivery to lysosomes. Collectively, these abnormalities lead to apoptosis of chondrocytes and lysosomal enzyme-mediated degradation of the bone matrix. Correction of an MBTPS1 variant or reduction of ER stress mitigated collagen-trafficking defects. These results define a new congenital human skeletal disorder and, more importantly, reveal that S1P is particularly required for skeletal development in humans. Our findings may also lead to new therapies for other genetic skeletal diseases, as ER dysfunction is common in these disorders.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Transporte Proteico , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doenças do Desenvolvimento Ósseo/fisiopatologia , Técnicas de Cultura de Células , Pré-Escolar , Condrócitos/metabolismo , Colágeno/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Doenças Genéticas Inatas , Complexo de Golgi/metabolismo , Homeostase , Humanos , Lipogênese , Lisossomos/metabolismo , Manosefosfatos , Mutação
16.
Cancer Sci ; 109(2): 403-411, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29266546

RESUMO

Podoplanin (PDPN) is expressed on many tumors and is involved in tumor metastasis. The objective of the present study was to develop an ELISA for determining soluble PDPN (sPDPN) levels as a potential novel tumor marker in plasma of patients with cancers for detection of tumor occurrence and metastasis. Mouse monoclonal antibodies (mAb) against human PDPN were developed and characterized. Two anti-PDPN mAb, SZ-163 and SZ-168, were used in a sandwich ELISA to detect plasma sPDPN in patients with cancers and in normal individuals. The levels of sPDPN were detected in patients with adenocarcinoma (87 cases, 31.09 ± 5.48 ng/ml), squamous cell carcinoma (86 cases, 6.91 ± 0.59 ng/ml), lung cancer (45 cases, 26.10 ± 7.62 ng/ml), gastric cancer (38 cases, 23.71 ± 6.90 ng/ml) and rectal cancer (27 cases, 32.98 ± 9.88 ng/ml), which were significantly higher than those in normal individuals (99 cases, 1.31 ± 0.13 ng/ml) (P < .0001). Moreover, the sPDPN levels in patients with metastatic cancers were higher (192 cases, 30.35 ± 3.63 ng/ml) than those in non-metastatic cancer patients (92 cases, 6.28 ± 0.77 ng/ml) (P < .0001). The post-treatment sPDPN levels of cancer patients (n = 156) (4.47 ± 0.35 ng/ml) were significantly lower compared with those seen pre-treatment (n = 128) (43.74 ± 4.97 ng/ml) (P < .0001). These results showed that an ELISA method was successfully established for quantitation of plasma sPDPN and plasma sPDPN levels correlate significantly with tumor occurrence and metastasis.


Assuntos
Biomarcadores Tumorais/sangue , Glicoproteínas de Membrana/sangue , Neoplasias/diagnóstico , Animais , Anticorpos Monoclonais/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetulus , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos , Metástase Neoplásica , Neoplasias/sangue , Neoplasias/metabolismo
17.
Proc Natl Acad Sci U S A ; 114(31): 8360-8365, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716912

RESUMO

Most platelet membrane proteins are modified by mucin-type core 1-derived glycans (O-glycans). However, the biological importance of O-glycans in platelet clearance is unclear. Here, we generated mice with a hematopoietic cell-specific loss of O-glycans (HC C1galt1-/- ). These mice lack O-glycans on platelets and exhibit reduced peripheral platelet numbers. Platelets from HC C1galt1-/- mice show reduced levels of α-2,3-linked sialic acids and increased accumulation in the liver relative to wild-type platelets. The preferential accumulation of HC C1galt1-/- platelets in the liver was reduced in mice lacking the hepatic asialoglycoprotein receptor [Ashwell-Morell receptor (AMR)]. However, we found that Kupffer cells are the primary cells phagocytosing HC C1galt1-/- platelets in the liver. Our results demonstrate that hepatic AMR promotes preferential adherence to and phagocytosis of desialylated and/or HC C1galt1-/- platelets by the Kupffer cell through its C-type lectin receptor CLEC4F. These findings provide insights into an essential role for core 1 O-glycosylation of platelets in their clearance in the liver.


Assuntos
Plaquetas/metabolismo , Galactosiltransferases/genética , Células de Kupffer/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Animais , Receptor de Asialoglicoproteína/metabolismo , Hepatócitos/metabolismo , Homeostase/fisiologia , Lectinas Tipo C/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombocitopenia/patologia
18.
Am J Physiol Gastrointest Liver Physiol ; 311(1): G74-83, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27229122

RESUMO

Mucin-type O-glycans, primarily core 1- and core 3-derived O-glycans, are the major mucus barrier components throughout the gastrointestinal tract. Previous reports identified the biological role of O-glycans in the stomach and colon. However, the biological function of O-glycans in the small intestine remains unknown. Using mice lacking intestinal core 1- and core 3-derived O-glycans [intestinal epithelial cell C1galt1(-/-);C3GnT(-/-) or double knockout (DKO)], we found that loss of O-glycans predisposes DKO mice to spontaneous duodenal tumorigenesis by ∼1 yr of age. Tumor incidence did not increase with age; however, tumors advanced in aggressiveness by 20 mo. O-glycan deficiency was associated with reduced luminal mucus in DKO mice before tumor development. Altered intestinal epithelial homeostasis with enhanced baseline crypt proliferation characterizes these phenotypes as assayed by Ki67 staining. In addition, fluorescence in situ hybridization analysis reveals a significantly lower bacterial burden in the duodenum compared with the large intestine. This phenotype is not reduced with antibiotic treatment, implying O-glycosylation defects, rather than bacterial-induced inflammation, which causes spontaneous duodenal tumorigenesis. Moreover, inflammatory responses in DKO duodenal mucosa are mild as assayed with histology, quantitative PCR for inflammation-associated cytokines, and immunostaining for immune cells. Importantly, inducible deletion of intestinal O-glycans in adult mice leads to analogous spontaneous duodenal tumors, although with higher incidence and heightened severity compared with mice with O-glycans constitutive deletion. In conclusion, these studies reveal O-glycans within the small intestine are critical determinants of duodenal cancer risk. Future studies will provide insights into the pathogenesis in the general population and those at risk for this rare but deadly cancer.


Assuntos
Adenocarcinoma/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Duodenais/metabolismo , Duodeno/metabolismo , Muco/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Linhagem Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Neoplasias Duodenais/genética , Neoplasias Duodenais/patologia , Duodenite/metabolismo , Duodenite/patologia , Duodeno/patologia , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Predisposição Genética para Doença , Glicosilação , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/genética , Fenótipo
19.
Blood ; 127(13): 1629-30, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27034419

RESUMO

In this issue of Blood, Tamura et al reveal a novel function for podoplanin on periarteriolar stromal cells in the bone marrow: promoting megakaryocyte growth and proplatelet formation by interaction with C-type lectin-like receptor 2 (CLEC-2).


Assuntos
Plaquetas/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Lectinas Tipo C/fisiologia , Megacariócitos/fisiologia , Glicoproteínas de Membrana/metabolismo , Células Estromais/fisiologia , Trombopoese/genética , Animais
20.
Nat Commun ; 7: 11302, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27066737

RESUMO

Lymphangiogenesis plays a pivotal role in diverse pathological conditions. Here, we demonstrate that a carbohydrate-binding protein, galectin-8, promotes pathological lymphangiogenesis. Galectin-8 is markedly upregulated in inflamed human and mouse corneas, and galectin-8 inhibitors reduce inflammatory lymphangiogenesis. In the mouse model of corneal allogeneic transplantation, galectin-8-induced lymphangiogenesis is associated with an increased rate of corneal graft rejection. Further, in the murine model of herpes simplex virus keratitis, corneal pathology and lymphangiogenesis are ameliorated in Lgals8(-/-) mice. Mechanistically, VEGF-C-induced lymphangiogenesis is significantly reduced in the Lgals8(-/-) and Pdpn(-/-) mice; likewise, galectin-8-induced lymphangiogenesis is reduced in Pdpn(-/-) mice. Interestingly, knockdown of VEGFR-3 does not affect galectin-8-mediated lymphatic endothelial cell (LEC) sprouting. Instead, inhibiting integrins α1ß1 and α5ß1 curtails both galectin-8- and VEGF-C-mediated LEC sprouting. Together, this study uncovers a unique molecular mechanism of lymphangiogenesis in which galectin-8-dependent crosstalk among VEGF-C, podoplanin and integrin pathways plays a key role.


Assuntos
Galectinas/metabolismo , Integrinas/metabolismo , Linfangiogênese , Glicoproteínas de Membrana/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Córnea/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Inflamação/patologia , Linfangiogênese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fator C de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA