Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(24)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552718

RESUMO

(1) Background: the miR-301a is well known involving the proliferation and migration of tumor cells. However, the role of miR-301a in the migration and phagocytosis of macrophages is still unclear. (2) Methods: sciatic nerve injury, liver injury models, as well as primary macrophage cultures were prepared from the miR-301a knockout (KO) and wild type (WT) mice to assess the macrophage's migration and phagocytosis capabilities. Targetscan database analysis, Western blotting, siRNA transfection, and CXCR4 inhibition or activation were performed to reveal miR301a's potential mechanism. (3) Results: the macrophage's migration and phagocytosis were significantly attenuated by the miR-301a KO both in vivo and in vitro. MiR-301a can target Yin-Yang 1 (YY1), and miR-301a KO resulted in YY1 up-regulation and CXCR4 (YY1's down-stream molecule) down-regulation. siYY1 increased the expression of CXCR4 and enhanced migration and phagocytosis in KO macrophages. Meanwhile, a CXCR4 inhibitor or agonist could attenuate or accelerate, respectively, the macrophage migration and phagocytosis. (4) Conclusions: current findings indicated that miR-301a plays important roles in a macrophage's capabilities of migration and phagocytosis through the YY1/CXCR4 pathway. Hence, miR-301a might be a promising therapeutic candidate for inflammatory diseases by adjusting macrophage bio-functions.


Assuntos
Macrófagos , MicroRNAs , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fagocitose/genética , RNA Interferente Pequeno , Transdução de Sinais , Movimento Celular/genética , Movimento Celular/fisiologia
2.
Mol Neurobiol ; 59(1): 429-444, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34708329

RESUMO

Silent information regulator 6 (SIRT6) is a mammalian homolog of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin family. Previous studies have been reported a pro-regenerative role of SIRT6 in central nervous system injury. However, the role of SIRT6 in peripheral nerve injury is still unknown. Given the importance and necessity of Schwann cell dedifferentiation response to peripheral nerve injury, we aim to investigate the molecular mechanism of SIRT6 steering Schwann cell dedifferentiation during Wallerian degeneration in injured peripheral nerve. Herein, we first examined the expression pattern of SIRT6 after peripheral nerve injury. Using the explants of sciatic nerve, an ex vivo model of nerve degeneration, we provided evidences indicating that SIRT6 inhibitor accelerates Schwann cell dedifferentiation as well as axonal and myelin degeneration, while SIRT6 activator attenuates this process. Moreover, in an in vitro Schwann cell dedifferentiation model, we found SIRT6 inhibitor promotes Schwann cell dedifferentiation through upregulating the expression of c-Jun. In addition, downregulation of c-Jun reverse the effects of SIRT6 inhibition on the Schwann cells dedifferentiation and axonal and myelin degeneration. In summary, we first described SIRT6 acts as a negative regulator for Schwann cells dedifferentiation during Wallerian degeneration and c-Jun worked as a direct downstream partner of SIRT6 in injured peripheral nerve.


Assuntos
Desdiferenciação Celular/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Células de Schwann/metabolismo , Sirtuínas/metabolismo , Degeneração Walleriana/metabolismo , Animais , Desdiferenciação Celular/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/patologia , Ratos , Células de Schwann/efeitos dos fármacos , Sirtuínas/antagonistas & inibidores , Degeneração Walleriana/patologia
3.
J Neuroinflammation ; 18(1): 234, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654444

RESUMO

BACKGROUND: Plenty of macrophages are recruited to the injured nerve to play key roles in the immunoreaction and engulf the debris of degenerated axons and myelin during Wallerian degeneration, thus creating a conducive microenvironment for nerve regeneration. Recently, drugs targeting the RhoA pathway have been widely used to promote peripheral axonal regeneration. However, the role of RhoA in macrophage during Wallerian degeneration and nerve regeneration after peripheral nerve injury is still unknown. Herein, we come up with the hypothesis that RhoA might influence Wallerian degeneration and nerve regeneration by affecting the migration and phagocytosis of macrophages after peripheral nerve injury. METHODS: Immunohistochemistry, Western blotting, H&E staining, and electrophysiology were performed to access the Wallerian degeneration and axonal regeneration after sciatic nerve transection and crush injury in the LyzCre+/-; RhoAflox/flox (cKO) mice or Lyz2Cre+/- (Cre) mice, regardless of sex. Macrophages' migration and phagocytosis were detected in the injured nerves and the cultured macrophages. Moreover, the expression and potential roles of ROCK and MLCK were also evaluated in the cultured macrophages. RESULTS: 1. RhoA was specifically knocked out in macrophages of the cKO mice; 2. The segmentation of axons and myelin, the axonal regeneration, and nerve conduction in the injured nerve were significantly impeded while the myoatrophy was more severe in the cKO mice compared with those in Cre mice; 3. RhoA knockout attenuated the migration and phagocytosis of macrophages in vivo and in vitro; 4. ROCK and MLCK were downregulated in the cKO macrophages while inhibition of ROCK and MLCK could weaken the migration and phagocytosis of macrophages. CONCLUSIONS: Our findings suggest that RhoA depletion in macrophages exerts a detrimental effect on Wallerian degeneration and nerve regeneration, which is most likely due to the impaired migration and phagocytosis of macrophages resulted from disrupted RhoA/ROCK/MLCK pathway. Since previous research has proved RhoA inhibition in neurons was favoring for axonal regeneration, the present study reminds us of that the cellular specificity of RhoA-targeted drugs is needed to be considered in the future application for treating peripheral nerve injury.


Assuntos
Macrófagos/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Degeneração Walleriana/metabolismo , Degeneração Walleriana/prevenção & controle , Proteína rhoA de Ligação ao GTP/deficiência , Animais , Movimento Celular/fisiologia , Células Cultivadas , Feminino , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismos dos Nervos Periféricos/patologia , Degeneração Walleriana/patologia , Proteína rhoA de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA