Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 261: 113118, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32621953

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Green tea is the most ancient and popular beverage worldwide and its main constituent epigallocatechin-3-gallate (EGCG) has a potential role in the management of cancer through the modulation of cell signaling pathways. However, EGCG is frangible to oxidation and exhibits low lipid solubility and bioavailability, and we synthesized a derivative of EGCG in an attempt to overcome these limitations. AIM OF THE STUDY: The anthracycline antibiotic daunorubicin (DNR) is a potent anticancer agent. However, its severe cardiotoxic limits its clinical efficacy. Human carbonyl reductase 1 (CBR1) is one of the most effective human reductases for producing hydroxyl metabolites and thus may be involved in increasing the cardiotoxicity and decreasing the antineoplastic effect of anthracycline antibiotics. Accordingly, in this study, we investigated the co-therapeutic effect of Y6, a novel and potent adjuvant obtained by optimization of the structure of EGCG. MATERIAL AND METHODS: The cellular concentrations of DNR and its metabolite DNRol were measured by HPLC to determine the effects of EGCG and Y6 on the inhibition of DNRol formation. The cytotoxic effects of EGCG and Y6 were tested by MTT assay in order to identify non-toxic concentrations of them. To understand their antitumor and cardioprotective mechanisms, hypoxia-inducible factor-1α (HIF-1α) and CBR1 protein expression was measured via Western blotting and immunohistochemical staining while gene expression was analyzed using RT-PCR. Moreover, PI3K/AKT and MEK/ERK signaling pathways were analyzed via Western blotting. HepG2 xenograft model was used to detect the effects of EGCG and Y6 on the antitumor activity and cardiotoxicity of DNR in vivo. Finally, to obtain further insight into the interactions of Y6 and EGCG with HIF-1α and CBR1, we performed a molecular modeling. RESULTS: Y6(10 µg/ml or 55 mg/kg) decreased the expression of HIF-1α and CBR1 at both the mRNA and protein levels during combined drug therapy in vitro as well as in vivo, thereby inhibiting formation of the metabolite DNRol from DNR, with the mechanisms being related to PI3K/AKT and MEK/ERK signaling inhibition. In a human carcinoma xenograft model established with subcutaneous HepG2 cells, Y6(55 mg/kg) enhanced the antitumor effect and reduced the cardiotoxicity of DNR more effectively than EGCG(40 mg/kg). CONCLUSIONS: Y6 has the ability to inhibit CBR1 expression through the coordinate inhibition of PI3K/AKT and MEK/ERK signaling, then synergistically enhances the antitumor effect and reduces the cardiotoxicity of DNR.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Antibióticos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Arritmias Cardíacas/prevenção & controle , Carcinoma Hepatocelular/tratamento farmacológico , Catequina/análogos & derivados , Daunorrubicina/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Cardiotoxicidade , Catequina/farmacologia , Proliferação de Células/efeitos dos fármacos , Daunorrubicina/toxicidade , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica , Frequência Cardíaca/efeitos dos fármacos , Células Hep G2 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Ethnopharmacol ; 259: 112852, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32278759

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hypervascularity has been considered as one of the major features of many solid tumors. Green tea is one of the commonly drink resources in China, and its active component, Epigallocatechin gallate (EGCG), exhibits antiangiogenic activities in various experimental tumor models. However, EGCG has many shortages, e.g., relatively unstable, low lipid solubility, poor bioavailability, and short duration of action. AIM OF THE STUDY: To overcome the shortages of EGCG for antiangiogenic antitumor usage, our study developed a novel EGCG derivate, Y6(5,3',4',3″,4″,5″-6-0-ethyl-EGCG). The underlying mechanism was also elucidated. MATERIAL AND METHODS: we evaluated the effects of EGCG, Y6 on HCC and angiogenesis in vivo and in vitro. Moreover, to understand their antitumor mechanisms, key factors within angiogenesis-related signaling pathways (MAPK/ERK1/2, PI3K/AKT, HIF-1 VEGF) were analyzed by using western blot, immunohistochemistry (IHC), quantitative real-time quantitative PCR (RT-PCR). HepG2 xenograft model and the chorioallantoic membrane (CAM) were used to investigate the effects of Y6 and EGCG on tumors and anti-angiogenesis in vivo. Micro-vessel density (MVD) was analyzed by IHC of CD34 staining. IHC, qRT-PCR and Western blot were used to detect the expression of HIF-1α and VEGF protein in tumor tissues. The protein levels of MAPK/ERK1/2, PI3K/AKT, HIF-1α, and VEGF in tumor tissues were detected by western blot. RESULTS: Our results demonstrated that both EGCG and Y6 displayed antiangiogenetic and antitumor effects against HCC cells in vitro and in vivo. We found that rather than equal amount of EGCG, Y6 displayed better abilities in inhibiting the growth of HCC tumor cells, as well as inhibiting the growth of neovascularization in the chick embryos and HepG2 xenograft tumors bearing-mice, based on the data obtained from MTT assay, immunohistochemistry (IHC), chick chorioallantoic membrane (CAM) assays. In the comparison of equivalent dose of EGCG, qRT-PCR data showed that Y6 induced more significant decrease of the mRNA levels of HIF-1α and VEGF in supernatant-treated SMMC-7721 cells under hypoxic condition, as well as in the in xenograft tumor tissues; whereas Y6 also significantly reduced the protein levels of MAPK/ERK1/2, PI3K/AKT, HIF-1α, and VEGF to a greater extent than EGCG, determined by western blotting assay. CONCLUSIONS: our work suggests that the new EGCG derivate Y6 could significantly inhibit tumor growth and angiogenesis which is possibly involved with the signaling intervention of MAPK/ERK1/2 and PI3K/AKT/HIF-1α/VEGF pathways, and is supposed to be a potential therapeutic reagent for anti-angiogenesis treatment of solid tumors.


Assuntos
Inibidores da Angiogênese/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Catequina/análogos & derivados , Neoplasias Hepáticas/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/metabolismo , Catequina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/patologia , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neovascularização Patológica/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Oncotarget ; 8(18): 29760-29770, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28423656

RESUMO

Cancer cells can acquire resistance to a wide variety of diverse and unrelated drugs, this phenomenon is termed multidrug resistance (MDR). Multidrug resistance has been an obstacle to the success of cancer chemotherapy. The present study investigated the reversal effect of Y6, a new compound obtained by chemically modifying the structure of epigallocatechin-3-gallate (EGCG) extracted from green tea. Y6 was proven to be effective in inhibiting cell proliferation and reversing drug resistance in doxorubicin (DOX) resistant human hepatocellular carcinoma cells (BEL-7404/DOX). BEL-7404/DOX cells were treated with either doxorubicin combination regimen (doxorubicin plus Y6 or epigallocatechin-3-gallate or verapamil separately) or doxorubicin alone. The results showed that cell proliferation was inhibited and late cell apoptosis increased in the combination treatment group, especially in the group treated with doxorubicin plus Y6. Further analysis revealed that the expressions of hypoxia-inducible factor-1α and multidrug resistance 1/P-glycoprotein decreased at both messenger RNA and protein levels by treatments with combined drugs compared to doxorubicin alone. Our results indicated that Y6, as a drug resistance reversal agent, increased the sensitivity of drug resistant cells to doxorubicin. The mechanisms of actions of Y6 in reversal effect were associated with the decreased expression of hypoxia-inducible factor-1α and multidrug resistance 1/P-glycoprotein.


Assuntos
Antineoplásicos/farmacologia , Catequina/análogos & derivados , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Catequina/química , Catequina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA