Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Neurobiol ; 81(3): 310-320, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324338

RESUMO

Though much is known about microtubule organization and microtubule-based transport in neurons, the development and function of microtubules in glia are more enigmatic. In this review, we provide an overview of the literature on microtubules in ramified brain cells, including oligodendrocytes, astrocytes, and microglia. We focus on normal cell biology-how structure relates to function in these cells. In oligodendrocytes, microtubules are important for extension of processes that contact axons and for elongating the myelin sheath. Recent studies demonstrate that new microtubules can form outside of the oligodendrocyte cell body off of Golgi outpost organelles. In astrocytes and microglia, changes in cell shape and ramification can be influenced by neighboring cells and the extracellular milieu. Finally, we highlight key papers implicating glial microtubule defects in neurological injury and disease and discuss how microtubules may contribute to invasiveness in gliomas. Thus, future research on the mechanisms underlying microtubule organization in normal glial cell function may yield valuable insights on neurological disease pathology.


Assuntos
Astrócitos , Microglia , Células Cultivadas , Microtúbulos/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia
2.
Proc Natl Acad Sci U S A ; 114(43): E9153-E9162, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073112

RESUMO

Oligodendrocytes in the central nervous system produce myelin, a lipid-rich, multilamellar sheath that surrounds axons and promotes the rapid propagation of action potentials. A critical component of myelin is myelin basic protein (MBP), expression of which requires anterograde mRNA transport followed by local translation at the developing myelin sheath. Although the anterograde motor kinesin KIF1B is involved in mbp mRNA transport in zebrafish, it is not entirely clear how mbp transport is regulated. From a forward genetic screen for myelination defects in zebrafish, we identified a mutation in actr10, which encodes the Arp11 subunit of dynactin, a critical activator of the retrograde motor dynein. Both the actr10 mutation and pharmacological dynein inhibition in zebrafish result in failure to properly distribute mbp mRNA in oligodendrocytes, indicating a paradoxical role for the retrograde dynein/dynactin complex in anterograde mbp mRNA transport. To address the molecular mechanism underlying this observation, we biochemically isolated reporter-tagged Mbp mRNA granules from primary cultured mammalian oligodendrocytes to show that they indeed associate with the retrograde motor complex. Next, we used live-cell imaging to show that acute pharmacological dynein inhibition quickly arrests Mbp mRNA transport in both directions. Chronic pharmacological dynein inhibition also abrogates Mbp mRNA distribution and dramatically decreases MBP protein levels. Thus, these cell culture and whole animal studies demonstrate a role for the retrograde dynein/dynactin motor complex in anterograde mbp mRNA transport and myelination in vivo.


Assuntos
Complexo Dinactina/metabolismo , Dineínas/metabolismo , Proteína Básica da Mielina/genética , Oligodendroglia/metabolismo , RNA Mensageiro/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/patologia , Transporte Biológico , Proliferação de Células/genética , Células Cultivadas , Complexo Dinactina/genética , Dineínas/genética , Larva , Proteínas dos Microfilamentos/genética , Oligodendroglia/patologia , Ratos Sprague-Dawley , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Dev Cell ; 29(5): 577-590, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24914561

RESUMO

Autophagy is essential for maintaining cellular homeostasis in neurons, where autophagosomes undergo robust unidirectional retrograde transport along axons. We find that the motor scaffolding protein JIP1 binds directly to the autophagosome adaptor LC3 via a conserved LIR motif. This interaction is required for the initial exit of autophagosomes from the distal axon, for sustained retrograde transport along the midaxon, and for autophagosomal maturation in the proximal axon. JIP1 binds directly to the dynein activator dynactin but also binds to and activates kinesin-1 in a phosphorylation-dependent manner. Following JIP1 depletion, phosphodeficient JIP1-S421A rescues retrograde transport, while phosphomimetic JIP1-S421D aberrantly activates anterograde transport. During normal autophagosome transport, residue S421 of JIP1 may be maintained in a dephosphorylated state by autophagosome-associated MKP1 phosphatase. Moreover, binding of LC3 to JIP1 competitively disrupts JIP1-mediated activation of kinesin. Thus, dual mechanisms prevent aberrant activation of kinesin to ensure robust retrograde transport of autophagosomes along the axon.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Transporte Axonal/fisiologia , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Fagossomos , Animais , Fosfatase 1 de Especificidade Dupla/metabolismo , Complexo Dinactina , Imunofluorescência , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação
4.
Trends Cell Biol ; 24(10): 564-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24953741

RESUMO

Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Organelas/metabolismo , Animais , Transporte Biológico/fisiologia , Dineínas/metabolismo , Humanos , Cinesinas/metabolismo , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia
5.
J Cell Biol ; 202(3): 495-508, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23897889

RESUMO

Regulation of the opposing kinesin and dynein motors that drive axonal transport is essential to maintain neuronal homeostasis. Here, we examine coordination of motor activity by the scaffolding protein JNK-interacting protein 1 (JIP1), which we find is required for long-range anterograde and retrograde amyloid precursor protein (APP) motility in axons. We identify novel interactions between JIP1 and kinesin heavy chain (KHC) that relieve KHC autoinhibition, activating motor function in single molecule assays. The direct binding of the dynactin subunit p150(Glued) to JIP1 competitively inhibits KHC activation in vitro and disrupts the transport of APP in neurons. Together, these experiments support a model whereby JIP1 coordinates APP transport by switching between anterograde and retrograde motile complexes. We find that mutations in the JNK-dependent phosphorylation site S421 in JIP1 alter both KHC activation in vitro and the directionality of APP transport in neurons. Thus phosphorylation of S421 of JIP1 serves as a molecular switch to regulate the direction of APP transport in neurons.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal , Dineínas/metabolismo , Cinesinas/metabolismo , Animais , Células Cultivadas , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA