Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 222(Pt B): 3215-3228, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243163

RESUMO

Although sweet tea is rich in bioactive polysaccharides, the knowledge regarding their structures, bioactivities, and gut microbial metabolism is still limited. Therefore, in order to promote the application of sweet tea polysaccharide (STP) in the food industry, the pressurized hot water extraction (PHWE) of STP was optimized, and its structural properties and biological effects as well as microbial fermentation characteristics were investigated. The maximum extraction yield (4.64 % ± 0.03 %) of STP extracted by PHWE was obtained under the optimal conditions. Both homogalacturonan and arabinogalactan might exist as major polysaccharide fragments in STP. Additionally, STP exerted obviously in vitro antioxidant, anti-diabetic, and immunostimulatory effects, which might be related to its chemical properties, such as uronic acids, conjugated polyphenolics, and esterification degree. Furthermore, STP could be consumed by intestinal microbiota, and its fermentability was about 54 % at the end stage of fecal fermentation. Indeed, STP could modulate the microbial composition via improving the growth of several beneficial microbes, causing the release of beneficial short-chain fatty acids. Collectively, the findings indicate that the PHWE is an efficient method for extracting bioactive polysaccharides from sweet tea, and results can also provide a scientific basis for developing STP into functional foods or functional ingredients.


Assuntos
Polissacarídeos , Água , Fermentação , Polissacarídeos/química , Água/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Chá/química
2.
Antioxidants (Basel) ; 11(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36009297

RESUMO

The leaf of sweet tea (Lithocarpus litseifolius) is widely used as an edible and medicinal plant in China, which is rich in bioactive polysaccharides. In order to explore and promote the application of sweet tea polysaccharides in the functional food industry, the microwave-assisted deep eutectic solvent extraction (MDAE) of polysaccharides from sweet tea leaves was optimized, and the structural properties and biological functions of sweet tea polysaccharides prepared by MDAE (P-DM) were investigated and compared with that of hot water extraction (P-W). The maximum yield (4.16% ± 0.09%, w/w) of P-DM was obtained under the optimal extraction conditions (extraction time of 11.0 min, extraction power of 576.0 W, water content in deep eutectic solvent of 21.0%, and liquid-solid ratio of 29.0 mL/g). Additionally, P-DM and P-W possessed similar constituent monosaccharides and glycosidic bonds, and the homogalacturonan (HG) and arabinogalactan (AG) might exist in both P-DM and P-W. Notably, the lower molecular weight, higher content of total uronic acids, and higher content of conjugated polyphenols were observed in P-DW compared to P-W, which might contribute to its much stronger in vitro antioxidant, anti-diabetic, antiglycation, and prebiotic effects. Besides, both P-DW and P-W exhibited remarkable in vitro immunostimulatory effects. The findings from the present study indicate that the MDAE has good potential to be used for efficient extraction of bioactive polysaccharides from sweet tea leaves and P-DM can be developed as functional food ingredients in the food industry.

3.
Foods ; 10(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34681371

RESUMO

The present study aimed to explore the impacts of in vitro simulated saliva-gastrointestinal digestion on physicochemical and biological properties of the polyphenolic-protein-polysaccharide ternary complex (PPP) extracted from Hovenia dulcis. The results revealed that the in vitro digestion did remarkably affect physicochemical properties of PPP, such as content of reducing sugar release, content of bound polyphenolics, and molecular weight distribution, as well as ratios of compositional monosaccharides and amino acids. In particular, the content of bound polyphenolics notably decreased from 281.93 ± 2.36 to 54.89 ± 0.42 mg GAE/g, which might be the major reason for the reduction of bioactivities of PPP after in vitro digestion. Molecular weight of PPP also remarkably reduced, which might be attributed to the destruction of glycosidic linkages and the disruption of aggregates. Moreover, although biological activities of PPP obviously decreased after in vitro digestion, the digested PPP (PPP-I) also exhibited remarkable in vitro antioxidant and antiglycation activities, as well as in vitro inhibitory effects against α-glucosidase. These findings can help to well understand the digestive behavior of PPP extracted from H. dulcis, and provide valuable and scientific supports for the development of PPP in the industrial fields of functional food and medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA