Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 37(11): 2728-2742, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36214339

RESUMO

Fructose overconsumption promotes tumor progression. Neuroblastoma is a common extracranial tumor with about 50% 5-year survival rate in high-risk children. The anti-tumor effect of Tribulus terrestris might bring new hope to neuroblastoma therapy. However, whether fructose disturbs the therapeutic effect of T. terrestris is currently unknown. In this study, the mouse neuroblastoma cell line, Neuro 2a (N2a) cells, was used to investigate the therapeutic effects of T. terrestris extract at various dosages (0.01, 1, 100 ng/ml) in regular EMEM medium or extra added fructose (20 mM) for 24 h. 100 ng/ml T. terrestris treatment significantly reduced the cell viability, whereas the cell viabilities were enhanced at the dosages of 0.01 or 1 ng/ml T. terrestris in the fructose milieu instead. The inhibition effect of T. terrestris on N2a migration was blunted in the fructose milieu. Moreover, T. terrestris effectively suppressed mitochondrial functions, including oxygen consumption rates, the activities of electron transport enzymes, the expressions of mitochondrial respiratory enzymes, and mitochondrial membrane potential. These suppressions were reversed in the fructose group. In addition, the T. terrestris-suppressed mitofusin and the T. terrestris-enhance mitochondrial fission 1 protein were maintained at basal levels in the fructose milieu. Together, these results demonstrated that T. terrestris extract effectively suppressed the survival and migration of neuroblastoma via inhibiting mitochondrial oxidative phosphorylation and disturbing mitochondrial dynamics. Whereas, the fructose milieu blunted the therapeutic effect of T. terrestris, particularly, when the dosage is reduced.


Assuntos
Frutose , Neuroblastoma , Animais , Linhagem Celular , Frutose/farmacologia , Camundongos , Mitocôndrias , Neuroblastoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Tribulus
2.
J Clin Med ; 10(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375339

RESUMO

Stroke is a neurological emergency, where the mechanism of the blood supply to the brain is impaired, resulting in brain cell ischemia and death. Neuroinflammation is a key component in the ischemic cascade that results in cell damage and death after cerebral ischemia. The triggering receptor expressed on myeloid cells-1 (TREM-1) modulates neuroinflammation after acute ischemic stroke. In the present study, 60 patients with acute ischemic stroke, who had been subjected to neurological examinations and National Institutes of Health Stroke Scale (NIHSS) and brain magnetic resonance imaging studies, were enrolled in the emergency room of Kaohsiung Chang Gung Memorial Hospital. Twenty-four healthy volunteers were recruited as controls. The serum levels of soluble TREM-1 (sTREM-1), human S100 calcium-binding protein B (S100B), and proinflammatory cytokines and chemokines, including tumor necrosis α (TNF-α), interleukin 1ß, interleukin 6 (IL-6), interleukin 8, and interferon-γ were measured immediately after acute ischemic stroke. The serum levels of sTREM-1, TNFα, IL-6, and S100B were correlated with the stroke volume and NIHSS, after acute ischemic stroke. Additionally, the serum levels of sTREM-1 were significantly positively correlated with S100B. The functional outcomes were evaluated 6 months after ischemic stroke by the Barthel index, which was correlated with the age and levels of sTREM-1 and S100B. We suggest that acute ischemic stroke induces neuroinflammation by the activation of the TREM-1 signaling pathway and the downstream inflammatory machinery that modulates the inflammatory response and ischemic neuronal cell death. From a translational perspective, our results may allow for the development of a new therapeutic strategy for acute ischemic stroke by targeting the TREM-1 signaling pathway.

3.
Biomed J ; 41(3): 169-183, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30080657

RESUMO

BACKGROUND: α-synuclein (SNCA) accumulation in the substantia nigra is one of the characteristic pathologies of Parkinson's disease (PD). A53T missense mutations in the SNCA gene has been proved to enhance the expression of SNCA and accelerate the onset of PD. Mitochondrial dysfunction in SNCA aggregation has been under debate for decades but the causal relationship remains uncertain. At a later stage of PD, the cellular dysfunctions are complicated and multiple factors are tangled. Our aim here is to investigate the mitochondrial functional changes and clarify the main causal mechanism at earlier-stage of PD. METHODS: We used the mutant A53T SNCA-expressed neuro 2a (N2a) cells without detectable cell death to investigate: 1) whether SNCA overexpression impairs the mitochondrial respiration and biogenesis. 2) The role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signal in SNCA-induced mitochondria dysfunction. RESULTS: Accompanying with the increment of SNCA, reactive oxygen species (ROS) accumulation was increased. The maximal respiratory capacity was suppressed. Meanwhile, mitochondrial complex 1 activity and the activity of nicotinamide adenine dinucleotide (NADH) cytochrome C reductase (NCCR) were decreased. Moreover, the mitochondrial DNA (mtDNA) copy number was decreased. On the other hand, the nuclear peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), Nrf2, and the cytosolic mitochondrial transcription factor A (TFAM) were increased at an early stage and declined thereafter. Above factors triggered by SNCA were reversed by tBHQ, a Nrf2 activator. CONCLUSION: These results suggested that at an early stage, SNCA-overexpressed increase mtROS accumulation, mitochondrial dysfunction and mtDNA decrement. Nrf2, PGC-1α and TFAM were upregulated to compromise mitochondrial dysfunction. tBHQ effectively reversed the SNCA-induced mitochondrial dysfunction.


Assuntos
Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Consumo de Oxigênio , alfa-Sinucleína/fisiologia , Animais , Linhagem Celular Tumoral , Hidroquinonas/farmacologia , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/fisiologia
4.
Mol Neurobiol ; 55(6): 4624-4636, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28707070

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor subtype. Despite that metastasis of GBM beyond the central nervous system (CNS) is rare, its malignancy is attributed to the highly infiltration trait, leading to the difficulty of complete surgical excision. Matrix gla protein (MGP) is a vitamin K-dependent small secretory protein, and functions as a calcification inhibitor. The involvement of MGP function in glioma cell dynamics remains to be clarified. The study showed that a low proliferative rat C6 glioma cell line named as C6-2 exhibited faster migratory and invasive capability compared to that observed in a high tumorigenic rat C6 glioma cell line (called as C6-1). Interestingly, C6-2 cells expressed higher levels of MGP molecules than C6-1 cells did. Lentivirus-mediated short hairpin RNA (shRNA) against MGP gene expression (MGP-KD) in C6-2 cells or lentivirus-mediated overexpression of MGP transcripts in C6-1 cells resulted in the morphological alteration of the two cell lines. Moreover, MGP-KD caused a decline in cell migration and invasion ability of C6-2 cells. In contrast, increased expression of MGP in C6-1 cells promoted their cell migration and invasion. The observations were further verified by the results from the implantation of C6-1 and C6-2 cells into ex vivo brain slice and in vivo rat brain. Thus, our results demonstrate that the manipulation of MGP expression in C6 glioma cells can mediate glioma cell migratory activity. Moreover, our findings indicate the possibility that high proliferative glioma cells expressing a high level of MGP may exist and contribute to tumor infiltration and recurrence.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular , Proteínas da Matriz Extracelular/metabolismo , Glioma/metabolismo , Glioma/patologia , Animais , Neoplasias Encefálicas/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Invasividade Neoplásica , Ratos Sprague-Dawley , Regulação para Cima , Proteína de Matriz Gla
5.
Springerplus ; 4: 597, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26543732

RESUMO

Ineffective therapeutic treatments and inadequate repair ability in the central nervous system are disturbing problems for several neurological diseases. Fortunately, the development of clinically applicable populations of stem cells has provided an avenue to overcome the failure of endogenous repair systems and substitute new cells into the damaged brain. However, there are still several existing obstacles to translating into clinical application. Here we review the stem-cell based therapies for Parkinson's disease and discuss the potential advantages and drawbacks. We hope this review may provide suggestions for viable strategies to overcome the current technical and biological issues associated with the application of stem cells in Parkinson's disease.

6.
PLoS One ; 10(9): e0137637, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26376480

RESUMO

High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington's disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered "ABC transporters", "RIG-I-like receptor signaling pathway", immune system", "adaptive immune system","tissue remodeling and wound repair" and "cytoskeleton remodeling". In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.


Assuntos
Biologia Computacional/métodos , Corpo Estriado/metabolismo , Regulação da Expressão Gênica , Doença de Huntington/genética , MicroRNAs/genética , Neuroblastoma/genética , Animais , Biomarcadores/metabolismo , Corpo Estriado/citologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Camundongos Transgênicos , Neuritos/metabolismo , Neuroblastoma/patologia , Fenótipo
7.
Brain Pathol ; 25(4): 481-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25178567

RESUMO

Huntington's disease (HD) is a genetic and neurodegenerative disease, leading to motor and cognitive dysfunction in HD patients. At cellular level, this disease is caused by the accumulation of mutant huntingtin (HTT) in different cells, and finally results in the dysfunction of different cells. To clean these mutant proteins, ubiquitin-proteasome system (UPS) and autophagy system are two critical pathways in the brain; however, little is known in other peripheral tissues. As mutant HTT affects different tissues progressively and might influence the UPS and autophagy pathways at early stages, we attempted to examine two clearance systems in HD models before the onset. Here, in vitro results showed that the accumulation of UPS signals with time was observed obviously in neuroblastoma and kidney cells, not in other cells. In HD transgenic mice, we observed the impairment of UPS, but not autophagy, over time in the cortex and striatum. In heart and muscle tissues, disturbance of autophagy was observed, whereas dysfunction of UPS was displayed in liver and lung. These results suggest that two protein clearance pathways are disturbed differentially in different tissues before the onset of HD, and enhancement of protein clearance at early stages might provide a potential stratagem to alleviate the progression of HD.


Assuntos
Doença de Huntington/genética , Doença de Huntington/patologia , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/metabolismo , Animais , Autofagia/genética , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína Huntingtina , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Músculos/metabolismo , Músculos/patologia , Mutação/genética , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/patologia , Ubiquitina/genética
8.
Acta Neurol Taiwan ; 23(3): 95-101, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077181

RESUMO

PURPOSE AND BACKGROUND: Churg-Strauss syndrome (CSS) is a systemic inflammatory disorder characterized by asthma, transient pulmonary infiltration, hyper-eosinophilia, and systemic vasculitis. Reported triggering factors include infections, drugs, allergic desensitization, and vaccinations, although cases involving the latter two are extremely rare. Herein, we describe a patient who developed CSS after receiving an H1N1 vaccination. CASE REPORT: A 55-year-old woman presented with fever, skin eruptions, and sensory impairment of her feet within one week after an H1N1 vaccine injection. A chest X-ray showed pulmonary infiltrations in both lower lung fields. Eosinophilia was noted in a hematological test, and an electrophysiological study revealed a pattern of mononeuritis multiplex. A skin biopsy was performed which revealed palisading necrotizing granuloma around a degenerated dermis and eosinophilic infiltration of the blood vessel walls. These findings combined with the hematological and electrophysiological findings met the criteria of CSS according to the American College of Rheumatology. The patient recovered well after steroid treatment. CONCLUSION: This case highlights the possibility that the H1N1 vaccination can trigger CSS. Due to the rarity of reported autoimmune events after vaccine administration and the obscure causal association between autoimmunity and a vaccine, further post-marketing surveillance and research are necessary to clarify the relationship and identify risk factors.


Assuntos
Síndrome de Churg-Strauss/etiologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/efeitos adversos , Vacinação/efeitos adversos , Feminino , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA