Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 363: 142858, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019194

RESUMO

Microbial fuel cells (MFCs) have the dual advantage of mitigating Cr(Ⅵ) wastewater ecological threats while generating electricity. However, the low electron transfer efficiency and the limited enrichment of active electrogens are barriers to MFCs advancement. This study describes the synthesis of the TP-PDA-RGO@CC negative electrode using tea polyphenol as a reducing agent and polydopamine-doped graphene, significantly enhances the roughness and hydrophilicity of the anode. The charge transfer resistance was reduced by 94%, and the peak MFC power was 1375.80 mW m-2. Under acidic conditions, the Cr(Ⅵ) reduction rate reached 92% within 24 h, with a 52% increase in coulombic efficiency. Biodiversity analysis shows that the TP-PDA-RGO@CC anode could enrich electrogens, thereby boosting the electron generation mechanism at the anode and enhancing the reduction efficiency of Cr(Ⅵ) in the cathode chamber. This work emphasizes high-performance anode materials for efficient pollutant removal, energy conversion, and biomass reuse.


Assuntos
Fontes de Energia Bioelétrica , Cromo , Eletrodos , Grafite , Indóis , Polímeros , Polifenóis , Chá , Polifenóis/química , Polímeros/química , Indóis/química , Cromo/química , Grafite/química , Chá/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Oxirredução
2.
RSC Adv ; 14(21): 14847-14856, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38716101

RESUMO

The microbial fuel cell (MFCs) has dual functions, capable of achieving dye decolorization and synchronous power generation. Despite these advantages, the MFCs have faced challenges related to low electron transfer efficiencies and limited dye treatment capacity in wastewater applications. This work introduces an innovative approach by employing reduced graphene oxide-modified carbon cloth (TP-RGO@CC) anodes, utilizing tea polyphenols as the reducing agent. This modification significantly enhances the hydrophilicity and biocompatibility of the anodes. The MFC equipped with the TP-RGO@CC anode demonstrated a remarkable increase in the maximum power density, reaching 773.9 mW m-2, representing a 22% improvement over the plain carbon cloth electrode. The decolorization rate of methyl orange (50 mg L-1, pH 7) reached 99% within 48 h. Biodiversity analysis revealed that the TP-RGO@CC anode selectively enriched electrogens producing and organic matter-degrading bacteria, promoting a dual mechanism of dye decolorization, degradation, and simultaneous electro-production at the anode. This work highlights advanced anode materials that excel in effective pollutant removal, energy conversion, and biomass reuse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA