Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Hypertens ; 42(4): 629-643, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230609

RESUMO

A potential antifibrotic mechanism in pathological myocardial remodeling is the recruitment of beneficial functional subpopulations of macrophages or the transformation of their phenotype. Macrophages are required to activate molecular cascades that regulate fibroblast behavior. Identifying mediators that activate the antifibrotic macrophage phenotype is tantamount to identifying the button that retards pathological remodeling of the myocardium; however, relevant studies are inadequate. Circulating renalase (RNLS) is mainly of renal origin, and cardiac myocytes also secrete it autonomously. Our previous studies revealed that RNLS delivers cell signaling to exert multiple cardiovascular protective effects, including the improvement of myocardial ischemia, and heart failure. Here, we further investigated the potential mechanism by which macrophage phenotypic transformation is targeted by RNLS to mediate stress load-induced myocardial fibrosis. Mice subjected to transverse aortic constriction (TAC) were used as a model of myocardial fibrosis. The co-incubation of macrophages and cardiac fibroblasts was used to study intercellular signaling. The results showed that RNLS co-localized with macrophages and reduced protein expression after cardiac pressure overload. TAC mice exhibited improved cardiac function and alleviated left ventricular fibrosis when exogenous RNLS was administered. Flow sorting showed that RNLS is essential for macrophage polarization towards a restorative phenotype (M2-like), thereby inhibiting myofibroblast activation, as proven by both mouse RAW264.7 and bone marrow-derived macrophage models. Mechanistically, we found that activated protein kinase B is a major pathway by which RNLS promotes M2 polarization in macrophages. RNLS may serve as a prognostic biomarker and a potential clinical candidate for the treatment of myocardial fibrosis.


Assuntos
Cardiomiopatias , Monoaminoxidase , Miocárdio , Camundongos , Animais , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Macrófagos , Fibroblastos/patologia , Fibrose , Remodelação Ventricular , Camundongos Endogâmicos C57BL
2.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887320

RESUMO

C9orf72 mutations are the most common form of familial amyotrophic lateral sclerosis (C9-ALS). It causes the production of proline-arginine dipeptide repeat proteins (PR-DPRs) in motor neurons (MNs), leading to the molecular pathology characteristic of ALS. UNC13A is critical for maintaining the synaptic function of MNs. Most ALS patients have nuclear deletion of the splicing repressor TDP-43 in MNs, which causes inclusion of the cryptic exon (CE) of UNC13A mRNA, resulting in nonsense-mediated mRNA decay and reduced protein expression. Therefore, in this study, we explored the role of PR-DPR in CE inclusion of UNC13A mRNA. Our results showed that PR-DPR (PR50) induced CE inclusion and decreased the protein expression of UNC13A in human neuronal cell lines. We also identified an interaction between the RNA-binding protein NOVA1 and PR50 by yeast two-hybrid screening. NOVA1 expression is known to be reduced in patients with ALS. We found that knockdown of NOVA1 enhanced CE inclusion of UNC13A mRNA. Furthermore, the naturally occurring triterpene betulin can inhibit the interaction between NOVA1 and PR50, thus preventing CE inclusion of UNC13A mRNA and protein reduction in human neuronal cell lines. This study linked PR-DPR with CE inclusion of UNC13A mRNA and developed candidate therapeutic strategies for C9-ALS using betulin.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Arginina/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/metabolismo , Neurônios Motores/patologia , Antígeno Neuro-Oncológico Ventral , Prolina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Cells ; 12(18)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759532

RESUMO

Defective autophagy is one of the cellular hallmarks of Parkinson's disease (PD). Therefore, a therapeutic strategy could be a modest enhancement of autophagic activity in dopamine (DA) neurons to deal with the clearance of damaged mitochondria and abnormal protein aggregates. Syringin (SRG) is a phenolic glycoside derived from the root of Acanthopanax senticosus. It has antioxidant, anti-apoptotic, and anti-inflammatory properties. However, whether it has a preventive effect on PD remains unclear. The present study found that SRG reversed the increase in intracellular ROS-caused apoptosis in SH-SY5Y cells induced by neurotoxin 6-OHDA exposure. Likewise, in C. elegans, degeneration of DA neurons, DA-related food-sensitive behaviors, longevity, and accumulation of α-synuclein were also improved. Studies of neuroprotective mechanisms have shown that SRG can reverse the suppressed expression of SIRT1, Beclin-1, and other autophagy markers in 6-OHDA-exposed cells. Thus, these enhanced the formation of autophagic vacuoles and autophagy activity. This protective effect can be blocked by pretreatment with wortmannin (an autophagosome formation blocker) and bafilomycin A1 (an autophagosome-lysosome fusion blocker). In addition, 6-OHDA increases the acetylation of Beclin-1, leading to its inactivation. SRG can induce the expression of SIRT1 and promote the deacetylation of Beclin-1. Finally, we found that SRG reduced the 6-OHDA-induced expression of miR-34a targeting SIRT1. The overexpression of miR-34a mimic abolishes the neuroprotective ability of SRG. In conclusion, SRG induces autophagy via partially regulating the miR-34a/SIRT1/Beclin-1 axis to prevent 6-OHDA-induced apoptosis and α-synuclein accumulation. SRG has the opportunity to be established as a candidate agent for the prevention and cure of PD.


Assuntos
MicroRNAs , Neuroblastoma , Síndromes Neurotóxicas , Doença de Parkinson , Humanos , Animais , Oxidopamina/farmacologia , Caenorhabditis elegans , alfa-Sinucleína , Proteína Beclina-1 , Sirtuína 1/genética , Autofagia , MicroRNAs/genética
4.
Sci Rep ; 13(1): 6865, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100863

RESUMO

Mutations in the extracellular matrix gene Fibrillin-2 (FBN2) are related to genetic macular degenerative disorders including age-related macular degeneration (AMD) and early-onset macular degeneration (EOMD). It was reported that the retinal protein expression of FBN2 was reduced in patients with AMD and EOMD. The effect of exogenously supplied fbn2 recombinant protein on fbn2-deficiency-related retinopathy was not known. Here we investigated the efficacy and molecular mechanism of intravitreally applied fibrin-2 recombinant protein in mice with fbn2-deficient retinopathy. The experimental study included groups (all n = 9) of adult C57BL/6J male mice which underwent no intervention, intravitreal injection of adeno-associated virus (AAV) empty vector or intravitreal injection of AAV-sh-fbn2 (adeno-associated virus for expressing short hairpin RNA for fibrillin-2) followed by three intravitreal injections of fbn2 recombinant protein, given in intervals of 8 days in doses of 0.30 µg, 0.75 µg, 1.50 µg, and 3.00 µg, respectively. Eyes with intravitreally applied AAV-sh-fbn2 as compared to eyes with injection of AAV-empty vector or developed an exudative retinopathy with involvement of the deep retinal layers, reduction in axial length and reduction in ERG amplitudes. After additional and repeated application of fbn2 recombinant protein, the retinopathy improved with an increase in retinal thickness and ERG amplitude, the mRNA and protein expression of transforming growth factor-beta (TGF-ß1) and TGF-ß binding protein (LTBP-1) increased, and axial length elongated, with the difference most marked for the dose of 0.75 µg of fbn2 recombinant protein. The observations suggest that intravitreally applied fbn2 recombinant protein reversed the retinopathy caused by an fbn2 knockdown.


Assuntos
Degeneração Macular , Retina , Masculino , Camundongos , Animais , Fibrilina-2/genética , Fibrilina-2/metabolismo , Injeções Intravítreas , Camundongos Endogâmicos C57BL , Retina/metabolismo , Degeneração Macular/metabolismo , Modelos Animais de Doenças , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Cells ; 12(6)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36980235

RESUMO

Glioblastoma (GBM) is a primary brain tumor of unknown etiology. It is extremely aggressive, incurable and has a short average survival time for patients. Therefore, understanding the precise molecular mechanisms of this diseases is essential to establish effective treatments. In this study, we cloned and sequenced a splice variant of the hydroxysteroid 11-ß dehydrogenase 1 like gene (HSD11B1L) and named it HSD11B1L-181. HSD11 B1L-181 was specifically expressed only in GBM cells. Overexpression of this variant can significantly promote the proliferation, migration and invasion of GBM cells. Knockdown of HSD11B1L-181 expression inhibited the oncogenic potential of GBM cells. Furthermore, we identified the direct interaction of parkin with HSD11B1L-181 by screening the GBM cDNA expression library via yeast two-hybrid. Parkin is an RBR E3 ubiquitin ligase whose mutations are associated with tumorigenesis. Small interfering RNA treatment of parkin enhanced the proliferative, migratory and invasive abilities of GBM. Finally, we found that the alkaloid peiminine from the bulbs of Fritillaria thunbergii Miq blocks the interaction between HSD11B1L-181 and parkin, thereby lessening carcinogenesis of GBM. We further confirmed the potential of peiminine to prevent GBM in cellular, ectopic and orthotopic xenograft mouse models. Taken together, these findings not only provide insight into GBM, but also present an opportunity for future GBM treatment.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Neoplasias Encefálicas , Glioblastoma , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/efeitos dos fármacos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogênese/genética , Cevanas/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Food Chem Toxicol ; 173: 113636, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708866

RESUMO

Mitochondrial dysfunction has been implicated in Parkinson's disease. Mic60 is a critical component of mitochondrial crista remodeling and participates in maintaining mitochondrial structure and function. This study investigated whether the carnosic acid (CA) of rosemary protects the mitochondria of SH-SY5Y cells against the neurotoxicity of 6-hydroxydopamine (6-OHDA) by regulating Mic60. Our results showed that CA pretreatment reversed the reduction in the Mic60 and citrate synthase proteins, as well as the protein induction of PKA caused by 6-OHDA. Moreover, Mic60 and PINK1 siRNAs blocked the ability of CA to lessen the release of mitochondrial cytochrome c by 6-OHDA. As shown by immunoprecipitation assay, in 6-OHDA-treated cells, the interaction of Mic60 with its phosphorylated threonine residue was decreased, but the interaction with its phosphorylated serine residue was increased. PINK1 siRNA and forskolin, a PKA activator, reversed these interactions. Moreover, forskolin pretreatment prevented CA from rescuing the interaction of PINK1 and Mic60 and the reduction in cytochrome c release and mitophagy impairment in 6-OHDA-treated cells. In conclusion, CA prevents 6-OHDA-induced cytochrome c release by regulating Mic60 phosphorylation by PINK1 through a downregulation of PKA. The regulation of Mic60 by CA can be considered as a protective mechanism for the prevention of Parkinson's disease.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , Oxidopamina/toxicidade , Citocromos c/metabolismo , Proteínas Mitocondriais/metabolismo , Doença de Parkinson/metabolismo , Colforsina/metabolismo , Neuroblastoma/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , RNA Interferente Pequeno , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Apoptose
7.
Bioengineering (Basel) ; 9(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290476

RESUMO

An extrahepatic manifestation of nephropathies can be a feature of the chronic hepatitis C virus (HCV) infection. Albuminuria is a major risk factor for nephropathies and chronic kidney disease (CKD). The correlation between HCV genotypes and albuminuria is still unclear. In this study, investigations have been done for the biomedical tools and methodologies used in the National Health and Nutrition Examination Survey (NHANES) public database. We searched the 2007−2016 NHANES public database to retrieve data regarding the different HCV genotypes and clinical scenarios. This study attempted to investigate the impacts of HCV genetic diversity, associated comorbidities, and racial differences on albuminuria. The urine albumin/creatinine ratio (ACR) was the primary endpoint. Among 40,856 participants, 336 participants with positive and 237 with negative HCV RNA tests were analyzed, excluding 14,454 participants with negative HCV antibodies and 25,828 which were missed. After controlling for sex, race, education level, smoking, diabetes mellitus, hepatitis B, alcohol use, and body mass index (BMI) with a generalized linear equation, HCV genotype 2 was more likely than any other genotype to cause albuminuria based on the urine ACR (p < 0.001). The generalized linear equation also demonstrated a significantly higher urine ACR, including hepatitis B (p < 0.001), diabetes mellitus (p < 0.001), and smoking (p = 0.026). In summary, the patients with HCV genotype 2 presented with increased albuminuria in comparison with other HCV genotypes in this 10-year retrospective analysis. HCV infection could be a risk factor of CKD; early diagnosis and appropriate treatment may improve clinical outcomes.

8.
J Clin Lab Anal ; 36(11): e24736, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36250221

RESUMO

BACKGROUND: To evaluate the accuracy and stability of arterial blood gas (ABG) results by comparison with venous measurements from routine blood tests, and to compare the accuracy and performance of two sampling syringes, pre-heparinized syringe (PHS) and disposable arterial blood syringe (DABS), in ABG analysis. METHODS: We retrospectively analyzed the practical use of PHS and DABS in collecting ABG samples, involving 500 and 400 patients, respectively. For each patient, in addition to the ABG sample, a venous blood sample was also collected using a venous blood collection tube (VBCT) and used for routine blood tests. Accordingly, patients were referred to as the PHS + VBCT group and DABS + VBCT group. The correlation between arterial and venous values of each blood parameter in each group was evaluated using the interclass correlation coefficient (ICC). Bland-Altman was performed to evaluate the agreement between arterial and venous values and compare the performance of PHS and DABS in ABG sample collection. RESULTS: In the PHS + VBCT group, arterial K+ , Na+ , hemoglobin (Hb), and hematocrit (HCT) were 0.32 mmol/L, 2.90 mmol/L, 2.21 g/L, and 1.27% significantly lower their corresponding venous values while arterial Cl- was 7.60 mmol/L significantly higher than venous Cl- . In the DABS + VBCT group, arterial K+ and Na+ were 0.20 mmol/L and 1.19 mmol/L significantly lower while Cl- and HCT in arterial blood were 5.34 mmol/L and 0.66% significantly higher than their corresponding venous values. In both groups, arterial K+ , Na+ , Hb, and HCT values were highly consistent with their corresponding venous values, with all ICCs greater than 0.70, especially Hb and HCT. Bland-Altman analysis demonstrated that arterial K+ and Na+ were more consistent with venous counterparts in the DABS + VBCT group, with a narrower 95% limits of agreement than the PHS + VBCT group (K+ , -0.7-0.3 mmol/L vs. -1.1 to 0.5 mmol/L; Na+ , -5.8 to 3.4 mmol/L vs. -8.2 to 2.4 mmol/L). CONCLUSION: Arterial blood gas analysis of K+ , Na+ , Hb, and HCT using PHS or DABS for blood sampling is accurate and stable, especially DABS, which can provide clinicians with fast and reliable blood gas results.


Assuntos
Gasometria , Coleta de Amostras Sanguíneas , Humanos , Gasometria/métodos , Coleta de Amostras Sanguíneas/instrumentação , Hemoglobinas , Estudos Retrospectivos , Veias
9.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010884

RESUMO

Brain-enriched myelin-associated protein 1 (BCAS1) is frequently highly expressed in human cancer, but its detailed function is unclear. Here, we identified a novel splice variant of the BCAS1 gene in glioblastoma multiforme (GBM) named BCAS1-SV1. The expression of BCAS1-SV1 was weak in heathy brain cells but high in GBM cell lines. The overexpression of BCAS1-SV1 significantly increased the proliferation and migration of GBM cells, whereas the RNA-interference-mediated knockdown of BCAS1-SV1 reduced proliferation and migration. Moreover, using a yeast-two hybrid assay, immunoprecipitation, and immunofluorescence staining, we confirmed that ß-arrestin 2 is an interaction partner of BCAS1-SV1 but not BCAS1. The downregulation of ß-arrestin 2 directly enhanced the malignancy of GBM and abrogated the effects of BCAS1-SV1 on GBM cells. Finally, we used a yeast two-hybrid-based growth assay to identify that maackiain (MK) is a potential inhibitor of the interaction between BCAS1-SV1 and ß-arrestin 2. MK treatment lessened the proliferation and migration of GBM cells and prolonged the lifespan of tumor-bearing mice in subcutaneous xenograft and intracranial U87-luc xenograft models. This study provides the first evidence that the gain-of-function BCAS1-SV1 splice variant promotes the development of GBM by suppressing the ß-arrestin 2 pathway and opens up a new therapeutic perspective in GBM.

10.
Cancers (Basel) ; 13(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34771481

RESUMO

Gold nanoparticles (AuNPs) were fabricated with biocompatible collagen (Col) and then conjugated with berberine (BB), denoted as Au-Col-BB, to investigate the endocytic mechanisms in Her-2 breast cancer cell line and in bovine aortic endothelial cells (BAEC). Owing to the superior biocompatibility, tunable physicochemical properties, and potential functionalization with biomolecules, AuNPs have been well studied as carriers of biomolecules for diseases and cancer therapeutics. Composites of AuNPs with biopolymer, such as fibronectin or Col, have been revealed to increase cell proliferation, migration, and differentiation. BB is a natural compound with impressive health benefits, such as lowering blood sugar and reducing weight. In addition, BB can inhibit cell proliferation by modulating cell cycle progress and autophagy, and induce cell apoptosis in vivo and in vitro. In the current research, BB was conjugated on the Col-AuNP composite ("Au-Col"). The UV-Visible spectroscopy and infrared spectroscopy confirmed the conjugation of BB on Au-Col. The particle size of the Au-Col-BB conjugate was about 227 nm, determined by dynamic light scattering. Furthermore, Au-Col-BB was less cytotoxic to BAEC vs. Her-2 cell line in terms of MTT assay and cell cycle behavior. Au-Col-BB, compared to Au-Col, showed greater cell uptake capacity and potential cellular transportation by BAEC and Her-2 using the fluorescence-conjugated Au-Col-BB. In addition, the clathrin-mediated endocytosis and cell autophagy seemed to be the favorite endocytic mechanism for the internalization of Au-Col-BB by BAEC and Her-2. Au-Col-BB significantly inhibited cell migration in Her-2, but not in BAEC. Moreover, apoptotic cascade proteins, such as Bax and p21, were expressed in Her-2 after the treatment of Au-Col-BB. The tumor suppression was examined in a model of xenograft mice treated with Au-Col-BB nanovehicles. Results demonstrated that the tumor weight was remarkably reduced by the treatment of Au-Col-BB. Altogether, the promising findings of Au-Col-BB nanocarrier on Her-2 breast cancer cell line suggest that Au-Col-BB may be a good candidate of anticancer drug for the treatment of human breast cancer.

11.
Phytomedicine ; 80: 153369, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33070082

RESUMO

BACKGROUND: Impairment of mitochondrial biogenesis is associated with the pathological progression of Parkinson's disease (PD). Parkin-interacting substrate (PARIS) can be ubiquitinated by parkin and prevents the repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α). PURPOSE: This study investigated whether the neuroprotective mechanism of carnosic acid (CA) from rosemary is mediated via the regulation of PARIS and PGC-1α by parkin. METHODS: The Western blotting and RT-PCR were used to determine protein and mRNA, respectively. To investigate the protein-protein interaction of between PARIS and ubiquitin, the immunoprecipitation assay (IP assay) was utilized. Silencing of endogenous parkin or PGC-1α was performed by using transient transfection of small interfering RNA (siRNA). RESULTS: SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA) increased PARIS protein, decreased PGC-1α protein, and reduced protein and mRNA of mitochondrial biogenesis-related genes. CA pretreatment reversed the effects of 6-OHDA. By IP assay, the interaction of PARIS with ubiquitin protein caused by CA was stronger than that caused by 6-OHDA. Moreover, knockdown of parkin attenuated the ability of CA to reverse the 6-OHDA-induced increase in PARIS and decrease in PGC-1α expression. PGC-1α siRNA was used to investigate how CA influenced the effect of 6-OHDA on the modulation of mitochondrial biogenesis and apoptosis. In the presence of PGC-1α siRNA, CA could no longer significantly reverse the reduction of mitochondrial biogenesis or the induction of cleavage of apoptotic-related proteins by 6-OHDA. CONCLUSION: The cytoprotective of CA is related to the enhancement of mitochondrial biogenesis by inhibiting PARIS and inducing PGC-1α by parkin. The activation of PGC-1α-mediated mitochondrial biogenesis by CA prevents the degeneration of dopaminergic neurons, CA may have therapeutic application in PD.


Assuntos
Abietanos/farmacologia , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Repressoras/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biogênese de Organelas , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
ACS Appl Mater Interfaces ; 12(40): 44393-44406, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32697572

RESUMO

Controlling the behavior of mesenchymal stem cells (MSCs) through topographic patterns is an effective approach for stem cell studies. We, herein, reported a facile method to create a dopamine (DA) pattern on poly(dimethylsiloxane) (PDMS). The topography of micropatterned DA was produced on PDMS after plasma treatment. The grid-topographic-patterned surface of PDMS-DA (PDMS-DA-P) was measured for adhesion force and Young's modulus by atomic force microscopy. The surface of PDMS-DA-P demonstrated less stiff and more elastic characteristics compared to either nonpatterned PDMS-DA or PDMS. The PDMS-DA-P evidently enhanced the differentiation of MSCs into various tissue cells, including nerve, vessel, bone, and fat. We further designed comprehensive experiments to investigate adhesion, proliferation, and differentiation of MSCs in response to PDMS-DA-P and showed that the DA-patterned surface had good biocompatibility and did not activate macrophages or platelets in vitro and had low foreign body reaction in vivo. Besides, it protected MSCs from apoptosis as well as excessive reactive oxygen species (ROS) generation. Particularly, the patterned surface enhanced the differentiation capacity of MSCs toward neural and endothelial cells. The stromal cell-derived factor-1α/CXantiCR4 pathway may be involved in mediating the self-recruitment and promoting the differentiation of MSCs. These findings support the potential application of PDMS-DA-P in either cell treatment or tissue repair.


Assuntos
Materiais Biocompatíveis/farmacologia , Dimetilpolisiloxanos/farmacologia , Dopamina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dimetilpolisiloxanos/química , Dopamina/química , Humanos , Células-Tronco Mesenquimais/metabolismo , Microscopia de Força Atômica , Estrutura Molecular , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
13.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585871

RESUMO

The movement disorder Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease, and is associated with aging, the environment, and genetic factors. The intracellular aggregation of α-synuclein and the loss of dopaminergic neurons in the substantia nigra pars compacta are the pathological hallmark of PD. At present, there is no successful treatment for PD. Maackiain (MK) is a flavonoid extracted from dried roots of Sophora flavescens Aiton. MK has emerged as a novel agent for PD treatment that acts by inhibiting monoamine oxidase B. In this study, we assessed the neuroprotective potential of MK in Caenorhabditis elegans and investigated possible mechanism of this neuroprotection in the human SH-SY5Y cell line. We found that MK significantly reduced dopaminergic neuron damage in 6-hydroxydopamine (6-OHDA)-exposed worms of the BZ555 strain, with corresponding improvements in food-sensing behavior and life-span. In transgenic worms of strain NL5901 treated with 0.25 mM MK, the accumulation of α-synuclein was diminished by 27% (p < 0.01) compared with that in untreated worms. Moreover, in worms and the SH-SY5Y cell line, we confirmed that the mechanism of MK-mediated protection against PD pathology may include blocking apoptosis, enhancing the ubiquitin-proteasome system, and augmenting autophagy by increasing PINK1/parkin expression. The use of small interfering RNA to downregulate parkin expression in vivo and in vitro could reverse the benefits of MK in PD models. MK may have considerable therapeutic applications in PD.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Proteínas Quinases/metabolismo , Pterocarpanos/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/toxicidade , Adrenérgicos/toxicidade , Animais , Apoptose , Autofagia , Caenorhabditis elegans/crescimento & desenvolvimento , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/etiologia , Neuroblastoma/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
14.
Clin Chim Acta ; 503: 19-34, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31923423

RESUMO

Hypertriglyceridemia is a risk factor for a series of diseases, such as cardiovascular disease (CVD), diabetes and nonalcoholic fatty liver disease (NAFLD). Angiopoietin-like proteins (ANGPTLs) family, especially ANGPTL3, ANGPTL4 and ANGPTL8, which regulate lipoprotein lipase (LPL) activity, play pivotal roles in triglyceride (TG) metabolism and related diseases/complications. There are many transcriptional and post-transcriptional factors that participate in physiological and pathological regulation of ANGPTLs to affect triglyceride metabolism. This review is intended to focus on the similarity and difference in the expression, structural features, regulation profile of the three ANGPTLs and inhibitory models for LPL. Description of the regulatory factors of ANGPTLs and the properties in regulating the lipid metabolism involved in the underlying mechanisms in pathological effects on diseases will provide potential therapeutic approaches for the treatment of dyslipidemia related diseases.


Assuntos
Proteínas Semelhantes a Angiopoietina/fisiologia , Lipase Lipoproteica/antagonistas & inibidores , Triglicerídeos/metabolismo , Proteína 3 Semelhante a Angiopoietina , Proteína 4 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Animais , Humanos , Lipase Lipoproteica/metabolismo , Hormônios Peptídicos
16.
Food Chem Toxicol ; 136: 110942, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31705926

RESUMO

An imbalance in mitochondrial dynamics is strongly associated with Parkinson's disease. The fusion protein optic atrophy 1 (OPA1) is up-regulated through the activation of parkin-mediated IκB kinase γ (IKKγ)/p65 signaling. This study investigated whether the neuroprotection of carnosic acid (CA) from rosemary is involved in mitochondrial dynamics and OPA1 protein induction by parkin/IKKγ/p65 signaling. The neurotoxin 6-hydroxydopamine (6-OHDA) treated with SH-SY5Y cells decreased OPA1 and mitofusin 2 fusion proteins, but increased fission 1 and dynamin related protein 1 (DRP1) fission proteins. By immunofluorescence, 6-OHDA induced the fluorescence of green spots outside the mitochondria, indicating that cytochrome c was released to the cytoplasm. Except for the effects on DRP1 protein, CA pretreatment reversed these effects of 6-OHDA. Additionally, CA treatment increased the ubiquitination of IKKγ, nuclear p65 protein, OPA1-p65 DNA binding activity, and OPA1 protein. However, transfection of parkin small interfering RNA (siRNA) attenuated these effects of CA. Furthermore, transfection of OPA1 siRNA abolished the action of CA to reverse 6-OHDA-increased cytosolic cytochrome c protein, apoptotic-related protein cleavage, and cell death. In conclusion, the mechanism by which CA counteracts the toxicity of 6-OHDA is through modulation of mitochondrial dynamics and upregulation of OPA1 via activation of the parkin/IKKγ/p65 pathway.


Assuntos
Abietanos/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Quinase I-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Quinase I-kappa B/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Neurotoxinas/toxicidade , Oxidopamina/toxicidade , Fator de Transcrição RelA/metabolismo , Ubiquitinação/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
17.
Toxins (Basel) ; 11(5)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31072027

RESUMO

Aflatoxins are carcinogenic secondary metabolites of fungi that contaminate many staple crops and foods. Aflatoxin contamination is a worldwide problem, especially in developing countries, posing health hazards, e.g., causing aflatoxicosis and hepatocellular carcinoma, and even death. Biological solutions for aflatoxin detoxification are environmentally friendly and a cheaper alternative than chemical methods. The aims of the current study were to investigate: (1) the ability of MSMEG_5998, an aflatoxin-degrading F420H2-dependent reductase from Mycobacterium smegmatis, to degrade aflatoxin B1 (AFB1) and reduce AFB1-caused damage in HepG2 cell culture model; and (2) whether a thioredoxin (Trx) linkage of MSMEG_5998 enhanced the enzyme activity. We show that Trx-linked MSMEG_5998 degraded 63% AFB1 and native MSMEG_5998 degraded 31% after 4 h at 22 °C, indicating that the Trx-linked enzyme had a better AFB1-degrading ability. In a HepG2 cell culture model, Trx-linked MSMEG_5998 reduced DNA damage and p53-mediated apoptosis caused by AFB1 to a greater extent than the native enzyme. These findings suggest that Trx-linked MSMEG_5998 could potentially be developed to protect the liver from AFB1 damage, or as a candidate protein to reduce AFB1-related toxicity in animals.


Assuntos
Aflatoxinas/toxicidade , Mycobacterium smegmatis/enzimologia , Oxirredutases/farmacologia , Substâncias Protetoras/farmacologia , Apoptose/efeitos dos fármacos , Dano ao DNA , Estabilidade Enzimática , Células Hep G2 , Humanos , Proteínas Recombinantes/farmacologia
18.
ACS Appl Bio Mater ; 2(3): 1017-1030, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021392

RESUMO

A fluorescein isothiocyanate (FITC)-labeled, hyaluronic acid (HA)-coated nanogld (NP-FITC) was developed to carry plasmid or siRNA into mesenchymal stem cells (MSCs). NP-FITC was characterized by scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectroscopy, and Fourier transform infrared (FTIR) spectrophotometry. Nontoxicity of NP-FITC in both normal cells and cancer cells was confirmed by the MTT assay. The cellular uptake of NP-FITC at different time points (30 min, 2 h, and 24 h) was verified using an immunofluorescence assay. The delivery efficiency of plasmid was tested on the delivery of superoxide dismutase-1 (SOD-1) plasmid, where the protein expression of SOD-1 was analyzed by Western blots. In addition, the delivery efficiency of siRNA was tested using CXCR4 siRNA. Besides, the siRNA delivery by NP-FITC was employed to elucidate the molecular mechanism associated with the effect of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1). The biological function of MSCs delivered with chemokine (C-X-C motif) receptor 4 (CXCR4) siRNA was examined using ELISA, gelatin zymography, and a migration assay. Finally, we evaluated the tissue distribution of NP-FITC after the direct injection in the retro orbital sinus of mice or after injection of NP-FITC internalized MSCs through the tail vein of mice. The data provided essential information for NP-FITC as a plasmid or siRNA carrier.

19.
Cell Transplant ; 27(3): 456-470, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29756519

RESUMO

Parkinson's disease (PD) causes motor dysfunction and dopaminergic cell death. Drug treatments can effectively reduce symptoms but often cause unwanted side effects. Stem cell therapies using cell replacement or indirect beneficial secretomes have recently emerged as potential therapeutic strategies. Although various types of stem cells have been proposed as possible candidates, adipose-derived stem cells (ADSCs) are easily obtainable, more abundant, less ethically disputed, and able to differentiate into multiple cell lineages. However, treatment of PD using adult stem cells is known to be less efficacious than neuron or embryonic stem cell transplantation. Therefore, improved therapies are urgently needed. n-Butylidenephthalide (BP), which is extracted from Angelica sinensis, has been shown to have anti-inflammatory and neuroprotective effects. Indeed, we previously demonstrated that BP treatment of ADSCs enhances the expression of neurogenesis and homing factors such as nuclear receptor related 1 protein, stromal-derived factor 1, and brain-derived neurotrophic factor. In the present study, we examined the ability of BP-pretreated ADSC transplantation to improve PD motor symptoms and protect dopamine neurons in a mouse model of PD. We evaluated the results using neuronal behavior tests such as beam walking, rotarod, and locomotor activity tests. ADSCs with or without BP pretreatment were transplanted into the striatum. Our findings demonstrated that ADSC transplantation improved motor abilities with varied efficacies and that BP stimulation improved the therapeutic effects of transplantation. Dopaminergic cell numbers returned to normal in ADSC-transplanted mice after 22 d. In summary, stimulating ADSCs with BP improved PD recovery efficiency. Thus, our results provide important new strategies to improve stem cell therapies for neurodegenerative diseases in future studies.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Doença de Parkinson/terapia , Anidridos Ftálicos/farmacologia , Adipócitos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Front Neurol ; 9: 116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551991

RESUMO

BACKGROUND AND PURPOSE: The blood-brain barrier (BBB) not only provides a physical obstruction but also recruits and activates neutrophils in cases of infection. Hemorrhagic or ischemic stroke reportedly induces the disruption of the BBB. However, few studies have reported a correlation between the incidence of meningitis in patients with a history of stroke. This study tested the hypothesis that patients with a history of stroke may be more vulnerable to meningitis. METHODS: Stroke and age-matched comparison (n = 29,436 and 87,951, respectively) cohorts were recruited from the Taiwan National Health Insurance database (2000-2011). Correlations between the two cohorts were evaluated by Cox proportional hazard regression model, Kaplan-Meier curve, and log-rank tests. RESULTS: The incidence of meningitis was higher in the stroke cohort compared to that in the comparison cohort [hazard ratio (HR), 2.89; 95% confidence interval (CI), 2.23-3.74, p < 0.001]. After adjusting for age, sex, and comorbidities, the estimated HR in the stroke cohort was 2.55-fold higher than that in the comparison cohort (CI, 1.94-3.37; p < 0.001). Notably, patients who had experienced hemorrhagic stroke had a higher incidence rate of meningitis than those with a history of ischemic stroke, except for patients older than 75 years (incidence rates in hemorrhagic/ischemic stroke patients, 3.14/1.48 in patients younger than 45 years, 1.52/0.41 in 45- to 64-year group, 1.15/0.90 in 65- to 74-year group, 0.74/0.93 in patients older than 75 years). Moreover, stroke patients who had undergone head surgery had the highest meningitis risk (adjusted HR, 8.66; 95% CI, 5.55-13.5; p < 0.001) followed by stroke patients who had not undergone head surgery (adjusted HR, 2.11; 95% CI, 1.57-2.82; p < 0.001). CONCLUSION: Our results indicated that stroke patients have higher risks of meningitis. Compromised BBB integrity in stroke patients may lead to increased vulnerability to infectious pathogens. In summary, our study provided new evidence of the clinical relationship between stroke and meningitis, and our findings suggest the need for precautions to prevent meningitis in stroke patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA