Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Anim Sci Biotechnol ; 14(1): 44, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932457

RESUMO

BACKGROUND: Intestinal inflammation is the main risk factor causing intestinal barrier dysfunction and lipopolysaccharide (LPS) can trigger inflammatory responses in various eukaryotic species. Yeast hydrolysate (YH) possesses multi-biological effects and is received remarkable attention as a functional ingredient for improving growth performance and promoting health in animals. However, there is still inconclusive on the protective effects of dietary YH supplementation on intestinal barrier of piglets. This study was conducted to investigate the attenuate effects of YH supplementation on inflammatory responses and intestinal barrier injury in piglets challenged with LPS. METHODS: Twenty-four piglets (with an average body weight of 7.42 ± 0.34 kg) weaned at 21 days of age were randomly assigned to one of two dietary treatments (12 replications with one pig per pen): a basal diet or a basal diet containing YH (5 g/kg). On the 22nd d, 6 piglets in each treatment were intraperitoneally injected with LPS at 150 µg/kg BW, and the others were injected with the same amount of sterile normal saline. Four hours later, blood samples of each piglet were collected and then piglets were euthanized. RESULTS: Dietary YH supplementation increased average daily feed intake and average daily gain (P < 0.01), decreased the ratio of feed intake to gain of piglets (P = 0.048). Lipopolysaccharide (LPS) injection induced systemic inflammatory response, evidenced by the increase of serum concentrations of haptoglobin (HP), adrenocorticotropic hormone (ACTH), cortisol, and interleukin-1ß (IL-1ß). Furthermore, LPS challenge resulted in inflammatory intestinal damage, by up-regulation of the protein or mRNA abundances of tumor necrosis factor-α (TNF-α), IL-1ß, toll-like receptors 4 (TLR4) and phosphor-nuclear factor-κB-p65 (p-NFκB-p65) (P < 0.01), and down-regulation of the jejunal villus height, the protein and mRNA abundances of zonula occludens-1 (ZO-1) and occludin (OCC; P < 0.05) in jejunal mucosa. Dietary YH supplementation decreased the impaired effects of ACTH, cortisol, HP, IL-1ß and diamine oxidase in serum (P < 0.05). Moreover, YH supplementation also up-regulated the jejunal villus height, protein and mRNA abundances of ZO-1 and OCC (P < 0.05), down-regulated the mRNA expressions of TNF-α and IL-1ß and the protein abundances of TNF-α, IL-1ß, TLR4 and p-NFκB-p65 in jejunal mucosa in LPS-challenged pigs (P < 0.01). CONCLUSION: Yeast hydrolysate could attenuate inflammatory response and intestinal barrier injury in weaned piglets challenged with LPS, which was associated with the inhibition of TLR4/NF-κB signaling pathway activation.

2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930062

RESUMO

Two experiments were carried out to evaluate the effects of betaine (BET) supplementation in diets with reduced net energy (NE) levels on growth performance, nutrient digestibility, and serum metabolomic profiles in growing pigs. In experiment 1, 24 growing pigs (initial body weight, BW, 30.83 ±â€…2.50 kg) were allotted to one of the four treatments (six replications with 1 pig per pen) in a 2 × 2 factorial arrangement, including two dietary NE levels (2475 [N-NE] or 2395 [R80-NE] kcal/kg) and two BET doses (0 or 1500 mg/kg). In experiment 2, 72 growing pigs were used in a 2 × 3 factorial arrangement, including three dietary NE levels (2475 [N-NE], 2415 [R60-NE], or 2355 [R120-NE] kcal/kg) and two BET doses (0 or 1500 mg/kg). Pigs with initial BW of 31.44 ±â€…1.65 kg were divided to one of the six treatments (six replications with 2 pigs per pen). In experiment 1, lowing NE concentrations increased average daily feed intake (ADFI) by 10.69% in pigs fed the diet without BET (P > 0.05). BET significantly increased ADFI in N-NE diet (P < 0.05) but had no influence on ADFI in R80-NE diet (P > 0.05). BET enhanced the apparent digestibility of crude protein (CP), dry matter (DM), organic matter (OM), gross energy (GE), and ether extract (EE) in R80-NE diet (P < 0.05). In experiment 2, lowing NE concentrations enhanced ADFI (P > 0.05) and decreased average daily gain (ADG; P < 0.05). The reduction in feed intake by BET was further enhanced as NE concentrations decreased from 2415 to 2355 kcal/kg (P < 0.10). BET reversed the elevation of serum triglyceride, alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase levels caused by R120-NE diet (P < 0.05). The concentrations of cholecystokinin and glucagon-like peptide 1 were increased by BET in pigs fed the R120-NE diet (P < 0.05). Serum metabolomics reveals that lowing dietary NE concentrations affected mainly amino acid biosynthetic pathways (P < 0.05). BET supplementation in R120-NE diet up-regulated serum BET levels and down-regulated homocysteine, DL-carnitine, and four amino acid secondary metabolites (P < 0.05). In conclusion, lowing dietary NE contents reduced the growth performance and caused metabolic abnormalities in growing pigs. However, BET decreased feed intake to a certain extent and improved the metabolic health of pigs fed the low-NE diets, which may be related to the dual regulation of amino acid metabolism and the secretion of appetite related hormones by BET.


Energy is an important factor in affecting the production efficiency and feed cost in animal husbandry. For pigs, the reduction of dietary energy will lead to a decreased growth performance. Therefore, additional researches towards ameliorating the negative effects caused by low energy diets are necessary to conduct, so as to develop appropriate nutritional strategies. Betaine, a trimethyl derivative of glycine, is considered to affect energy partitioning. Betaine may influence the growth performance and healthy status of pigs under low-energy conditions. Herein, two experiments were carried out to evaluate the effects of betaine supplementation in diets with reduced net energy levels on growth performance, nutrient digestibility, and serum metabolomic profiles in growing pigs. Results indicated that lowering dietary energy reduced growth performance and caused metabolic abnormalities in growing pigs, however, betaine supplementation in low-energy diets improved metabolic homeostasis and the utilization of energy despite reduced feed intake to a certain extent.


Assuntos
Betaína , Suplementos Nutricionais , Suínos , Animais , Betaína/farmacologia , Dieta/veterinária , Aminoácidos/metabolismo , Nutrientes , Ração Animal/análise , Digestão , Fenômenos Fisiológicos da Nutrição Animal
3.
J Anim Physiol Anim Nutr (Berl) ; 105(5): 898-907, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33715204

RESUMO

The present study investigated the effects of Bacillus coagulans and yeast hydrolysate supplementation on growth performance, immune response and intestinal barrier function of weaned piglets. Twenty-four weaned piglets with an average body weight (BW) of 6.89 ± 0.15 kg were divided into four diets for 28 days. The treatments were basal diet (control), basal diet supplemented with antibiotic (20 mg/kg colistin sulphate and 40 mg/kg bacitracin zinc, AT), probiotics (400 mg/kg Bacillus coagulans ≥5 × 109 CFU/g, BC) or yeast hydrolysate (5000 mg/kg yeast hydrolysate, YH). Average daily gain (ADG) and average daily feed intake (ADFI) were improved by AT and YH diets (p < 0.05), while BC diet only increased ADG (p < 0.05). The complement 3 (C3), lysozyme (LZM) and tumour necrosis factor-α (TNF-α) concentrations in serum were increased in BC diet (p < 0.05). Feeding AT and YH caused the increase of jejunal villus height (p < 0.05), and a higher ratio of villus height/crypt depth was observed in AT, BC and YH groups (p < 0.05). The mRNA expression of zonula occludens-1 (ZO-1) in jejunal mucosa was up-regulated by AT, BC and YH diets (p < 0.05). Dietary AT, BC or YH inclusion decreased the interleukin-1ß (IL-1ß) concentration and TNF-α mRNA expression (p < 0.05), and YH supplementation even down-regulated toll-like receptor 4 (TLR4) and CD14 expressions (p < 0.05). In summary, the dietary administration of BC or YH both improves growth performance through promoting the intestinal barrier function, indicating both of them can serve as potential alternatives to antibiotics growth promoters for the piglet production.


Assuntos
Bacillus coagulans , Animais , Dieta/veterinária , Suplementos Nutricionais , Imunidade , Mucosa Intestinal , Saccharomyces cerevisiae , Suínos
4.
Anim Nutr ; 5(4): 366-372, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31890913

RESUMO

This study was to investigate the effects of dietary supplementation of Bacillus coagulans (BC) and yeast hydrolysates (YH) on growth performance, antioxidant activity, cytokines and intestinal microflora of growing-finishing pigs. Thirty-six barrows (initial BW = 26.87 ± 2.65 kg) were assigned randomly to 3 treatments with 4 replicates, 3 pigs per replicate. Pigs in the control group (CON) were fed a basal diet, and the diets for the other 2 groups were the basal diet plus BC at 200 mg/kg and the basal diet plus YH at 3,000 mg/kg. The trial lasted for 104 d. Compared with CON, YH treatment significantly increased average daily gain (ADG) and average daily feed intake (ADFI) during the finishing phase (P < 0.05), and significantly enhanced ADG during the overall period (P < 0.05). Dietary inclusion of BC tended to increase ADFI during the finishing period (P = 0.08). Compared with CON, BC treatment improved lysozyme (LZM), complement 3 (C3), complement 4 (C4), interlenkin-10 (IL-10) and total antioxidant capacity (T-AOC) level in serum (P < 0.05). Dietary inclusion of YH enhanced the serum IL-10 level (P < 0.05) and tended to increase T-AOC level (P = 0.06). Dietary inclusion of YH elevated (P < 0.05) the number of Lactobacillus and Bacillus in cecal contents of pigs, promoted the populations of Bifidobacterium and Bacillus in colonic contents. Moreover, the BC diet increased (P < 0.05) the count of Bifidobacterium in colonic contents. These results indicated that dietary BC supplementation is beneficial to improve the immunity. Dietary YH supplementation promoted the growth performance and the populations of beneficial bacteria in the hindgut of the growing-finishing pigs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA