Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 12(5): 2160-2172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693085

RESUMO

Chemoresistance has become a major obstacle to effective retinoblastoma treatment. The urothelial cancer-associated gene 1 (UCA1) is commonly considered an oncogene in certain types of cancer and is related to drug resistance. Nonetheless, the molecular mechanism and effect of UCA1 in carboplatin resistance in retinoblastoma are unclear. In this study, UCA1 expression was determined by sequential screening and lncRNA profile analysis, which is highly abundant in carboplatin-resistant retinoblastoma cells. Functional analyses revealed that UCA1 promoted carboplatin resistance by promoting c-Met and AXL expression. Mechanistic studies revealed that UCA1 facilitated c-Met and AXL expression as a ceRNA of miR-206. Importantly, retinoblastoma nude mouse model experiments revealed that targeting UCA1 or c-Met and AXL can restore drug sensitivity in carboplatin-resistant retinoblastoma. Collectively, we found that UCA1 is a mediator of carboplatin resistance in retinoblastoma cells. It competes with others as the endogenous RNA of miR-206, thus upregulating its targets, c-MET and AXL expression.

2.
Biochem Biophys Res Commun ; 617(Pt 2): 69-76, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35691117

RESUMO

Diabetic retinopathy (DR) is a key reason for legal blindness worldwide. Currently, it is urgently necessary to determine the etiology and pathological molecular mechanism of DR to search for resultful therapies. Dickkopf-1 (DKK1) is inhibitive for canonical Wnt signaling via negative feedback, and has been reported as a biomarker for DR. However, the related mechanisms are still unclear. In this work, our data showed that DKK1 was decreased in the vitreous tissues at an early stage of diabetes triggered by streptozotocin (STZ) injection in rats. We subsequently found that DKK1 intravitreal injection significantly ameliorated the physiological function of retina in STZ-challenged rats, accompanied by improved retinal structure. Surprisingly, our results indicated that DKK1 injection remarkably suppressed PANoptosis in retinal tissues of STZ-challenged rats with DR, as proved by ameliorated pyroptosis, apoptosis and necroptosis, which were mainly through the blockage of cleaved Gasdermin-D (GSDMD), Caspase-3 and receptor-interacting protein kinase-3 (RIPK3). Additionally, Wnt signaling including the expression of Wnt, ß-catenin and LDL receptor-related protein 5/6 (LRP5/6) was also highly prohibited in retina of DKK1-injected rats with DR. Furthermore, retinal neovascularization and acellular vessel in DR rats were also considerably abolished after DKK1 injection, accompanied by reduced expression levels of retinal vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9). More in vitro experiments showed that DKK1 treatment markedly repressed the proliferative and migratory ability of endothelial cells via inhibiting angiogenesis-related molecules. Together, all our results broaden the knowledge of the correlation between DKK1 and DR, and then provide a novel therapeutic strategy for the suppression of management of DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Retiniana , Animais , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Ratos , Retina/metabolismo , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/prevenção & controle , Estreptozocina , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Cell Death Dis ; 12(7): 708, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267179

RESUMO

The dysregulated microRNAs (miRNAs) are involved in diabetic retinopathy progression. Epithelial mesenchymal transition (EMT) and cell permeability are important events in diabetic retinopathy. However, the function and mechanism of miR-195 in EMT and cell permeability in diabetic retinopathy remain largely unclear. Diabetic retinopathy models were established using streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-stimulated ARPE-19 cells. Retina injury was investigated by hematoxylin-eosin (HE) staining. EMT and cell permeability were analyzed by western blotting, immunofluorescence, wound healing, and FITC-dextran assays. MiR-195 expression was detected via qRT-PCR. YY1, VEGFA, Snail1, and Smurf2 levels were detected via western blotting. The interaction relationship was analyzed via ChIP, Co-IP, or dual-luciferase reporter assay. The retina injury, EMT, and cell permeability were induced in STZ-induced diabetic mice. HG induced EMT and cell permeability in ARPE-19 cells. MiR-195, YY1, VEGFA, and Snail1 levels were enhanced, but Smurf2 abundance was reduced in STZ-induced diabetic mice and HG-stimulated ARPE-19 cells. VEGFA knockdown decreased Snail1 expression and attenuated HG-induced EMT and cell permeability. YY1 silence reduced VEGFA and Snail1 expression, and mitigated HG-induced EMT and cell permeability. YY1 could bind with VEGFA and Snail1, and it was degraded via Smurf2-mediated ubiquitination. MiR-195 knockdown upregulated Smurf2 to decrease YY1 expression and inhibited HG-induced EMT and cell permeability. MiR-195 targeted Smurf2, increased expression of YY1, VEGFA, and Snail1, and promoted HG-induced EMT and cell permeability. MiR-195 promotes EMT and cell permeability of HG-stimulated ARPE-19 cells by increasing VEGFA/Snail1 via inhibiting the Smurf2-mediated ubiquitination of YY1.


Assuntos
Retinopatia Diabética/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , MicroRNAs/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Células Epiteliais/patologia , Glucose/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Permeabilidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Transcrição YY1/genética
4.
Free Radic Biol Med ; 169: 361-381, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33762162

RESUMO

Long noncoding RNAs (lncRNAs) are important regulators in various diseases including diabetic retinopathy (DR). In this study, DR patients exhibited significantly increased expression of serum LncRNA-OGRU compared with normal individuals. Streptozotocin (STZ)-challenged rats with DR also had higher OGRU expression in retinas than that of the control group, which was confirmed in Müller cells upon high glucose (HG) stimulation. OGRU knockdown remarkably decreased vascular endothelial growth factor (VEGF) and transforming growth factor-ß1 (TGF-ß1) expression in HG-incubated Müller cells. HG-induced inflammatory response and oxidative stress in vitro were markedly mitigated by OGRU knockdown through restraining IκBɑ/nuclear factor kappa beta (NF-κB) and improving nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, respectively. Further studies indicated that OGRU suppression greatly restored miR-320 expression, and a negative correlation between them was detected in DR patients. We also found that miR-320 over-expression considerably restrained TGF-ß1 signaling, and hindered inflammation and reactive oxygen species (ROS) production in HG-stimulated Müller cells. Additionally, OGRU knockdown or miR-320 over-expression could dramatically down-regulate ubiquitin-specific peptidase 14 (USP14) expression levels in HG-incubated Müller cells, and miR-320 could directly target USP14. Notably, OGRU/miR-320 axis-mediated TGF-ß1 signaling, inflammation and ROS were largely dependent on USP14. Intriguingly, our results showed that USP14 directly interacted with transforming growth factor-beta type 1 receptor (TßR1), and impeded TßR1 ubiquitination and degradation. Furthermore, USP14 could also facilitate IκBɑ deubiquitination and degradation, exacerbating IκBɑ phosphorylation and NF-κB activation. Finally, our in vivo studies confirmed that OGRU knockdown considerably ameliorated DR progression in STZ-challenged rats through mediating the mechanisms observed in vitro. Collectively, these findings implicated that LncRNA-OGRU mediated DR progression through competing for miR-320 to regulate USP14 expression, and thus LncRNA-OGRU/miR-320/USP14 axis may be considered as a therapeutic target for DR treatment.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , MicroRNAs , RNA Longo não Codificante , Animais , Retinopatia Diabética/genética , Humanos , Inflamação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Ubiquitina Tiolesterase/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Int Ophthalmol ; 40(5): 1277-1284, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31981000

RESUMO

OBJECTIVE: To investigate the dry eye symptoms after cataract surgery in MGD patients and their relationships METHODS: The study included 115 patients (115 eyes) with age-related cataract that underwent uncomplicated cataract surgery, and the patients were divided into two groups according to the MGD diagnostic criteria: group A (MGD group) and group B (control group). Schirmer I test (ST-I), tear breakup time (TBUT), and corneal fluorescein staining (CFS) were performed preoperatively and at 3 days, 7 days, 14 days, and 30 days postoperatively. We also measured eyelid meibomian gland morphology, meibomian gland expression, and meibum character scores before and after the cataract surgery. RESULTS: Postoperatively, in group A, TBUT decreased and CFS scores increased significantly. ST-I increased in the early postoperative course but decreased later. The eyelid margin morphology scores and meibomian gland expression scores of group A significantly increased after the cataract operation. Thus, patients with MGD may have a greater chance of developing the dry eye disease after cataract surgery. Cataract surgery may aggravate the signs of MGD, and the severity of MGD may positively correlate with TBUT, CFS, and corneal lesions after surgery. CONCLUSIONS: The characteristics of dry eye after cataract surgery in patients with MGD are different from common cataract patients, changes in the early postoperative phase to the ocular surface were caused by surgical factors, and the damages to epithelial function in the later postoperative phase were mainly associated with the inflammation of the meibomian gland and eyelid.


Assuntos
Extração de Catarata/efeitos adversos , Síndromes do Olho Seco/diagnóstico , Glândulas Tarsais/patologia , Complicações Pós-Operatórias , Idoso , Idoso de 80 Anos ou mais , Síndromes do Olho Seco/etiologia , Feminino , Fluorofotometria , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
6.
Acta Biochim Biophys Sin (Shanghai) ; 51(1): 1-8, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496406

RESUMO

Age-related macular degeneration (AMD) is one of the major causes of irreversible blindness among aging populations in developed countries and can be classified as dry or wet according to its progression. Wet AMD, which is characterized by angiogenesis on the choroidal membrane, is uncommonly seen but more severe. Controlling or completely inhibiting the factors that contribute to the progression of events that lead to angiogenesis may be an effective strategy for treating wet AMD. Emerging evidence has shown that transforming growth factor-ß (TGF-ß) signaling plays a significant role in the progression of wet AMD. In this review, we described the roles of and changes in TGF-ß signaling in the development of AMD and discussed the mechanisms of the TGF-ß superfamily in choroidal neovascularization (CNV) and wet AMD, including the modulation of angiogenesis-related factors, inflammation, vascular fibrosis, and immune responses, as well as cross-talk with other signaling pathways. These remarkable findings indicate that TGF-ß signaling is a potential target for wet AMD treatment.


Assuntos
Neovascularização de Coroide/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Degeneração Macular Exsudativa/metabolismo , Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/fisiopatologia , Citocinas/metabolismo , Progressão da Doença , Humanos , Mediadores da Inflamação/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/fisiopatologia
7.
J Biosci ; 43(5): 985-1000, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30541958

RESUMO

Retinal injury plays a leading role in the onset of visual impairment. Current forms of treatment are not able to ameliorate scarring, cell death and tissue and axon regeneration. Recently, microRNA-216a (miR-216a) has been reported to regulate snx5, a novel notch signalling pathway component during retinal development. This study aims to elucidate the role of miR-216a in yttrium aluminium garnet (YAG) laser-induced retinal injury by targeting glial cell line-derived neurotrophic factor (GDNF) via GDNF/GDNF family neurotrophic factor receptor α1 (GFRα1)/rearranged during transfection (RET) signalling pathway. Wistar male rats were first randomly assigned into control and model groups. Immunohistochemistry was performed to detect the GDNF positive expression rate and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining for apoptotic index (AI) of retinal tissue. Retinal neurons were divided into normal, blank, negative control (NC), miR-216a mimic, miR-216a inhibitor, siRNA-GDNF and miR-216a inhibitor?siRNA-GDNF groups. Dual luciferase reporter assay was conducted in order to identify the targeting relationship between GDNF and miR-216a. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot were used for the analysis of mRNA and protein levels of miR-216a and related genes. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine cell proliferation and flow cytometry was used to observe cell cycle and apoptosis. Results show that the model group had an increased GDNF positive rate, AI of retinal tissue and mRNA and protein levels of cellular oncogene fos (c-fos), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), GDNF, GFRα1 and bcl-2-associated X protein (bax), declined miR-216a level and mRNA and protein levels of RET and bcl-2 compared with the control group. GDNF was verified as the target gene for miR-216a. Compared with the blank and NC groups, the miR-216a mimic and siRNA-GDNF groups had higher mRNA and protein levels of c-fos, VEGF and bax, cell number in the G1 phase and increased cell apoptosis but reduced BDNF, GDNF, GFRα1, RET and bcl-2 expression, cell proliferation and cell numbers in the S phase, while the opposite trend was observed in the miR-216a inhibitor group. Taken together, our findings demonstrate that elevated GDNF levels can reduce the retinal injury, whereby down-regulated miR-216a aggravates the YAG laser-induced retinal injury by targeting the GDNF level through the GDNF/ GFRα1/RET signalling pathway.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Lasers de Estado Sólido/efeitos adversos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-ret/genética , Retina/metabolismo , Degeneração Retiniana/genética , Animais , Antagomirs/genética , Antagomirs/metabolismo , Apoptose , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ciclo Celular/genética , Proliferação de Células , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/antagonistas & inibidores , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Retina/lesões , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Adv Exp Med Biol ; 1074: 473-478, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721978

RESUMO

Age-related macular degeneration (AMD) and diabetic retinopathy (DR), leading causes of blindness, share a common retinal environment: hypoxia which is a major stimulator for the upregulation of vascular endothelial growth factor (VEGF), a cardinal pathogenic factor for the breakdown of blood-retina barrier (BRB). As a result of intensive studies on VEGF pathobiology, anti-VEGF strategy has become a major therapeutics for wet AMD and DR. To investigate the potential impact of anti-VEGF strategy on major retinal supporting cells, Müller glia (MG), we disrupted VEGF receptor-2 (VEGFR2) in MG with conditional knockout (CKO) and examined the effect of VEGFR2-null on MG viability and neuronal integrity in mice. VEGFR2 CKO mice demonstrated a significant loss of MG density in diabetes/hypoxia, which in turn resulted in accelerated retinal degeneration. These defects appear similar to the clinical characteristics in a significant portion of wet-AMD patients with long-term anti-VEGF therapies. In this article, we will discuss the potential relevance of these clinical characteristics to the critical role of VEGF signaling in MG viability and neuronal integrity in hypoxia.


Assuntos
Retinopatia Diabética/metabolismo , Células Ependimogliais/efeitos dos fármacos , Degeneração Macular/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência , Animais , Bevacizumab/efeitos adversos , Bevacizumab/farmacologia , Barreira Hematorretiniana , Hipóxia Celular , Células Cultivadas , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Progressão da Doença , Células Ependimogliais/fisiologia , Técnicas de Inativação de Genes , Humanos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/patologia , Camundongos , Camundongos Knockout , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia
9.
Nucleic Acids Res ; 41(15): 7240-59, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23771139

RESUMO

Using nuclear factor-κB (NF-κB) ChIP-Seq data, we present a framework for iterative learning of regulatory networks. For every possible transcription factor-binding site (TFBS)-putatively regulated gene pair, the relative distance and orientation are calculated to learn which TFBSs are most likely to regulate a given gene. Weighted TFBS contributions to putative gene regulation are integrated to derive an NF-κB gene network. A de novo motif enrichment analysis uncovers secondary TFBSs (AP1, SP1) at characteristic distances from NF-κB/RelA TFBSs. Comparison with experimental ENCODE ChIP-Seq data indicates that experimental TFBSs highly correlate with predicted sites. We observe that RelA-SP1-enriched promoters have distinct expression profiles from that of RelA-AP1 and are enriched in introns, CpG islands and DNase accessible sites. Sixteen novel NF-κB/RelA-regulated genes and TFBSs were experimentally validated, including TANK, a negative feedback gene whose expression is NF-κB/RelA dependent and requires a functional interaction with the AP1 TFBSs. Our probabilistic method yields more accurate NF-κB/RelA-regulated networks than a traditional, distance-based approach, confirmed by both analysis of gene expression and increased informativity of Genome Ontology annotations. Our analysis provides new insights into how co-occurring TFBSs and local chromatin context orchestrate activation of NF-κB/RelA sub-pathways differing in biological function and temporal expression patterns.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/metabolismo , Redes Reguladoras de Genes , Genoma Humano , NF-kappa B/análise , Elementos Alu , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/genética , Montagem e Desmontagem da Cromatina , Humanos , Modelos Estatísticos , Anotação de Sequência Molecular , NF-kappa B/genética , Motivos de Nucleotídeos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de RNA , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA