Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170421, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38286291

RESUMO

Leachate comprising organic contaminants such as dichloromethane is frequently discharged into groundwater at contaminated sites and unlined landfills. Soil-bentonite backfills in vertical cutoff walls are extensively employed to contain the flow of contaminated groundwater, thereby safeguarding the downstream groundwater environmental quality and ecosystem. This study presented a comprehensive evaluation of effects of dichloromethane-impacted groundwater on hydraulic conductivity and microscopic characteristics of soil-bentonite backfills amended with polymer namely polyanionic cellulose and microscale zero-valent iron. The results showed the amended backfills exhibited lower hydraulic conductivity than the unamended backfill regardless of the permeant type, i.e., tap water and dichloromethane solution. Scanning electron microscopy coupled with energy-dispersive spectrometry analyses demonstrated that polyanionic cellulose hydrogel could effectively coat sand, bentonite, and microscale zero-valent iron particles, providing protection of bentonite particles against attacks imposed by the dichloromethane and multivalent iron ions, and diminish aggregation of microscale zero-valent iron particles in the amended backfills. X-ray diffraction results indicated there was no intercalation of polyanionic cellulose and microscale zero-valent iron into the montmorillonite platelets of bentonite particles. Based on the Fourier Transform Infrared Spectroscopy Spectra analysis, a new functional group (-CH2) was identified on the polyanionic cellulose amended bentonite particles. The results demonstrated that amendment with polyanionic cellulose and microscale zero-valent iron is a promising approach to improve the performance of soil-bentonite backfills in containing flow of dichloromethane-impacted groundwater.

2.
Cancer Res ; 79(21): 5587-5596, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31395608

RESUMO

Aberrant activity of polycomb repressive complex 2 (PRC2) is involved in a wide range of human cancer progression. The WD40 repeat-containing protein EED is a core component of PRC2 and enhances PRC2 activity through interaction with H3K27me3. In this study, we report the discovery of a class of pyrimidone compounds, represented by BR-001, as potent allosteric inhibitors of PRC2. X-ray co-crystallography showed that BR-001 directly binds EED in the H3K27me3-binding pocket. BR-001 displayed antitumor potency in vitro and in vivo. In Karpas422 and Pfeiffer xenograft mouse models, twice daily oral dosing with BR-001 resulted in robust antitumor activity. BR-001 was also efficacious in syngeneic CT26 colon tumor-bearing mice; oral dosing of 30 mg/kg of BR-001 led to 59.3% tumor growth suppression and increased frequency of effector CD8+ T-cell infiltrates in tumors. Pharmacodynamic analysis revealed that CXCL10 was highly upregulated, suggesting that CXCL10 triggers the trafficking of CD8+ T cells toward tumor sites. Our results demonstrate for the first time that inhibition of EED modulates the tumor immune microenvironment to induce regression of colon tumors and therefore has the potential to be used in combination with immune-oncology therapy. SIGNIFICANCE: BR-001, a potent inhibitor of the EED subunit of the PRC2 complex, suppresses tumor progression by modulating the tumor microenvironment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Neoplasias do Colo/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Xenoenxertos/imunologia , Xenoenxertos/metabolismo , Histonas/imunologia , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Complexo Repressor Polycomb 2/imunologia , Complexo Repressor Polycomb 2/metabolismo , Pirimidinonas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA