Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 13(8): 1433-1439, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30106056

RESUMO

Designing and/or searching for novel antioxidants against oxygen glucose deprivation (OGD)-induced oxidative damage represents an effective strategy for the treatment of human ischemic stroke. Selenium is an essential trace element, which is beneficial in the chemoprevention and chemotherapy of cerebral ischemic stroke. The underlying mechanisms for its therapeutic effects, however, are not well documented. Selenocysteine (SeC) is a selenium-containing amino acid with neuroprotective potential. Studies have shown that SeC can reduce irradiation-induced DNA apoptosis by reducing DNA damage. In this study, the in vitro protective potential and mechanism of action of SeC against OGD-induced apoptosis and neurotoxicity were evaluated in HT22 mouse hippocampal neurons. We cultured HT22 cells in a glucose-free medium containing 2 mM Na2S4O2, which formed an OGD environment, for 90 minutes. Findings from MTT, flow cytometry and TUNEL staining showed obvious cytotoxicity and apoptosis in HT22 cells in the OGD condition. The activation of Caspase-7 and Caspase-9 further revealed that OGD-induced apoptosis of HT22 cells was mainly achieved by triggering a mitochondrial-mediated pathway. Moreover, the OGD condition also induced serious DNA damage through the accumulation of reactive oxygen species and superoxide anions. However, SeC pre-treatment for 6 hours effectively inhibited OGD-induced cytotoxicity and apoptosis in HT22 cells by inhibiting reactive oxygen species-mediated oxidative damage. Our findings provide evidence that SeC has the potential to suppress OGD-induced oxidative damage and apoptosis in hippocampal neurons.

2.
Front Physiol ; 9: 1907, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687122

RESUMO

Accumulated evidences have verified that cancer chemotherapy may increase the risk of osteoporosis and severely affected the life quality. Osteoclasts hyperactivation was commonly accepted as the major pathogenesis of osteoporosis. However, the role of osteoblasts dysfunction in osteoporosis was little investigated. Our previous study has confirmed that selenium-containing protein from selenium-enriched Spirulina platensis (Se-SP) exhibited enhanced hepatoprotective potential through inhibiting oxidative damage. Herein, the protective effect of Se-SP against cisplatin-induced osteoblasts dysfunction in MC3T3-E1 mouse preosteoblast was investigated, and the underlying mechanism was evaluated. The results indicated that cisplatin dramatically decreased cell viability of preosteoblast by triggering mitochondria-mediated apoptosis pathway. Cisplatin treatment also caused mitochondrial dysfunction and reactive oxide species (ROS)-mediated oxidative damage. However, Se-SP pre-treatment effectively prevented MC3T3-E1 cells from cisplatin-induced mitochondrial dysfunction by balancing Bcl-2 family expression and regulating the opening of mitochondrial permeability transition pore (MPTP), attenuated cisplatin-induced oxidative damage through inhibiting the overproduction of ROS and superoxide anion, and eventually reversed cisplating-induced early and late apoptosis by inhibiting PARP cleavage and caspases activation. Our findings validated that Se-SP as a promising Se species could be a highly effective way in the chemoprevention and chemotherapy of oxidative damage-mediated bone diseases.

3.
Sci Rep ; 7(1): 6465, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743999

RESUMO

Thioredoxin reductase (TrxR) as a selenium (Se)-containing antioxidase plays key role in regulating intracellular redox status. Selenocystine (SeC) a natural available Se-containing amino acid showed novel anticancer potential through triggering oxidative damage-mediated apoptosis. However, whether TrxR-mediated oxidative damage was involved in SeC-induced apoptosis in human glioma cells has not been elucidated yet. Herein, SeC-induced human glioma cell apoptosis was detected in vitro, accompanied by PARP cleavage, caspases activation and DNA fragmentation. Mechanically, SeC caused mitochondrial dysfunction and imbalance of Bcl-2 family expression. SeC treatment also triggered ROS-mediated DNA damage and disturbed the MAPKs and AKT pathways. However, inhibition of ROS overproduction effectively attenuated SeC-induced oxidative damage and apoptosis, and normalized the expression of MAPKs and AKT pathways, indicating the significance of ROS in SeC-induced apoptosis. Importantly, U251 human glioma xenograft growth in nude mice was significantly inhibited in vivo. Further investigation revealed that SeC-induced oxidative damage was achieved by TrxR1-targeted inhibition in vitro and in vivo. Our findings validated the potential of SeC to inhibit human glioma growth by oxidative damage-mediated apoptosis through triggering TrxR1-targeted inhibition.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Selenocisteína/farmacologia , Tiorredoxina Redutase 1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Glioma/metabolismo , Glioma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiorredoxina Redutase 1/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Mol Neurobiol ; 37(2): 211-222, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26971524

RESUMO

Progressive accumulation of beta-amyloid (Aß) will form the senile plaques and cause oxidative damage and neuronal cell death, which was accepted as the major pathological mechanism to the Alzheimer's disease (AD). Hence, inhibition of Aß-induced oxidative damage and neuronal cell apoptosis by agents with potential antioxidant properties represents one of the most effective strategies in combating human AD. Curcumin (Cur) a natural extraction from curcuma longa has potential of pharmacological efficacy, including the benefit to antagonize Aß-induced neurotoxicity. However, the molecular mechanism remains elusive. The present study evaluated the protective effect of Cur against Aß-induced cytotoxicity and apoptosis in PC12 cells and investigated the underlying mechanism. The results showed that Cur markedly reduced Aß-induced cytotoxicity by inhibition of mitochondria-mediated apoptosis through regulation of Bcl-2 family. The PARP cleavage, caspases activation, and ROS-mediated DNA damage induced by Aß were all significantly blocked by Cur. Moreover, regulation of p38 MAPK and AKT pathways both contributed to this protective potency. Our findings suggested that Cur could effectively suppress Aß-induced cytotoxicity and apoptosis by inhibition of ROS-mediated oxidative damage and regulation of ERK pathway, which validated its therapeutic potential in chemoprevention and chemotherapy of Aß-induced neurotoxicity.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Curcumina/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Fragmentos de Peptídeos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
Neurochem Res ; 42(4): 997-1005, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27995497

RESUMO

Chemotherapy has always been one of the most effective ways in combating human glioma. However, the high metastatic potential and resistance toward standard chemotherapy severely hindered the chemotherapy outcomes. Hence, searching effective chemotherapy drugs and clarifying its mechanism are of great significance. Salinomycin an antibiotic shows novel anticancer potential against several human tumors, including human glioma, but its mechanism against human glioma cells has not been fully elucidated. In the present study, we demonstrated that salinomycin treatment time- and dose-dependently inhibited U251 and U87 cells growth. Mechanically, salinomycin-induced cell growth inhibition against human glioma was mainly achieved by induction of G1-phase arrest via triggering reactive oxide species (ROS)-mediated DNA damage, as convinced by the activation of histone, p53, p21 and p27. Furthermore, inhibition of ROS accumulation effectively attenuated salinomycin-induced DNA damage and G1 cell cycle arrest, and eventually reversed salinomycin-induced cytotoxicity. Importantly, salinomycin treatment also significantly inhibited the U251 tumor xenograft growth in vivo through triggering DNA damage-mediated cell cycle arrest with involvement of inhibiting cell proliferation and angiogenesis. The results above validated the potential of salinomycin-based chemotherapy against human glioma.


Assuntos
Dano ao DNA/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glioma/metabolismo , Piranos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Piranos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Cell Biol Toxicol ; 32(4): 333-45, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27184666

RESUMO

Caudatin as one species of C-21 steroidal from Cynanchum bungei decne displays potential anticancer activity. However, the underlying mechanisms remain elusive. In the present study, the growth suppressive effect and mechanism of caudatin on human glioma U251 and U87 cells were evaluated in vitro. The results indicated that caudatin significantly inhibited U251 and U87 cell growth in both a time- and dose-dependent manner. Flow cytometry analysis revealed that caudatin-induced cell growth inhibition was achieved by induction of cell apoptosis, as convinced by the increase of Sub-G1 peak, PARP cleavage and activation of caspase-3, caspase-7 and caspase-9. Caudatin treatment also resulted in mitochondrial dysfunction which correlated with an imbalance of Bcl-2 family members. Further investigation revealed that caudatin triggered U251 cell apoptosis by inducing reactive oxygen species (ROS) generation through disturbing the redox homeostasis. Moreover, pretreatment of caspase inhibitors apparently weakens caudatin-induced cell killing, PARP cleavage and caspase activation and eventually reverses caudatin-mediated apoptosis. Importantly, caudatin significantly inhibited U251 tumour xenografts in vivo through induction of cell apoptosis involving the inhibition of cell proliferation and angiogenesis, which further validate its value in combating human glioma in vivo. Taken together, the results described above all suggest that caudatin inhibited human glioma cell growth by induction of caspase-dependent apoptosis with involvement of mitochondrial dysfunction and ROS generation.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Caspases/metabolismo , Glioma/tratamento farmacológico , Glicosídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Inibidores de Caspase/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioma/metabolismo , Glioma/patologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
7.
Neurochem Res ; 41(6): 1439-47, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26846141

RESUMO

Selenocysteine (SeC) a natural available selenoamino acid exhibits novel anticancer activities against human cancer cell lines. However, the growth inhibitory effect and mechanism of SeC in human glioma cells remain unclear. The present study reveals that SeC time- and dose-dependently inhibited U251 and U87 human glioma cells growth by induction of S-phase cell cycle arrest, followed by the marked decrease of cyclin A. SeC-induced S-phase arrest was achieved by inducing DNA damage through triggering generation of reactive oxygen species (ROS) and superoxide anion, with concomitant increase of TUNEL-positive cells and induction of p21waf1/Cip1 and p53. SeC treatment also caused the activation of p38MAPK, JNK and ERK, and inactivation of AKT. Four inhibitors of MAPKs and AKT pathways further confirmed their roles in SeC-induced S-phase arrest in human glioma cells. Our findings advance the understanding on the molecular mechanisms of SeC in human glioma management.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Dano ao DNA/fisiologia , Glioma/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Oncogênica v-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selenocisteína/farmacologia , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Selênio/farmacologia
8.
Mol Neurobiol ; 53(7): 4363-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26232068

RESUMO

Hyperglycemia as the major hallmark of diabetic neuropathy severely limited its therapeutic efficiency. Evidences have revealed that selenium (Se) as an essential trace element could effectively reduce the risk of neurological diseases. In the present study, 3,3'-diselenodipropionic acid (DSePA), a derivative of selenocystine, was employed to investigate its protective effect against high glucose-induced neurotoxicity in PC12 cells and evaluate the underlying mechanism. The results suggested that high glucose showed significant cytotoxicity through launching mitochondria-mediated apoptosis in PC12 cells, accompanied by poly (ADP-ribose) polymerase (PARP) cleavage, caspase activation, and mitochondrial dysfunction. Moreover, high glucose also triggered DNA damage and dysregulation of MAPKs and AKT pathways through reactive oxygen species (ROS) overproduction. p53 RNA interference partially suppressed high glucose-induced cytotoxicity and apoptosis, indicating the role of p53 in high glucose-induced signal. However, DSePA pretreatment effectively attenuated high glucose-induced cytotoxicity, inhibited the mitochondrial dysfunction through regulation of Bcl-2 family, and ultimately reversed high glucose-induced apoptotic cell death in PC12 cells. Attenuation of caspase activation, PARP cleavage, DNA damage, and ROS accumulation all confirmed its protective effects. Moreover, DSePA markedly alleviated the dysregulation of AKT and MAPKs pathways induced by high glucose. Our findings revealed that the strategy of using DSePA to antagonize high glucose-induced neurotoxicity may be a highly effective strategy in combating high glucose-mediated neurological diseases.


Assuntos
Dano ao DNA , Glucose/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurotoxinas/toxicidade , Propionatos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Compostos de Selênio/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Células PC12 , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
Cell Mol Neurobiol ; 36(5): 647-55, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26224360

RESUMO

Hypothermia treatment is one of the neuroprotective strategies that improve neurological outcomes effectively after brain damage. Minimally invasive surgery (MIS) has been an important treatment of intracerebral hemorrhage (ICH). Herein, we evaluated the neuroprotective effect and mechanism of MIS joint local cooling lavage (LCL) treatment on ICH via detecting the inflammatory responses, oxidative injury, and neuronal apoptosis around the hematoma cavity in rats. ICH model was established by type IV collagenase caudatum infusion. The rats were treated with MIS 6 h after injection, and then were lavaged by normothermic (37 °C) and hypothermic (33 °C) normal saline in brain separately. The results indicated that MIS joint LCL treatment showed enhanced therapeutic effects against ICH-induced inflammation injury and apoptosis in rats, as convinced by the decline of TUNEL-positive cells, followed by the decrease of IL-1ß and LDH and increase of IL-10 and SOD. This study demonstrated that the strategy of using MIS joint LCL may achieve enhanced neuroprotection against ICH-induced inflammation injury and apoptosis in rats with potential clinic application.


Assuntos
Apoptose/efeitos dos fármacos , Edema Encefálico/cirurgia , Hemorragia Cerebral/complicações , Procedimentos Cirúrgicos Minimamente Invasivos , Animais , Lesões Encefálicas/cirurgia , Hemorragia Cerebral/terapia , Inflamação/cirurgia , Masculino , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Neurônios/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Irrigação Terapêutica/métodos
10.
Appl Microbiol Biotechnol ; 78(2): 265-73, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18071641

RESUMO

An extracellular beta-agarase (AgaA34) was purified from a newly isolated marine bacterium, Agarivorans albus YKW-34 from the gut of a turban shell. AgaA34 was purified to homogeneity by ion exchange and gel filtration chromatographies with a recovery of 30% and a fold of ten. AgaA34 was composed of a single polypeptide chain with the molecular mass of 50 kDa. N-terminal amino acid sequencing revealed a sequence of ASLVTSFEEA, which exhibited a high similarity (90%) with those of agarases from glycoside hydrolase family 50. The pH and temperature optima of AgaA34 were pH 8.0 and 40 degrees C, respectively. It was stable over pH 6.0-11.0 and at temperature up to 50 degrees C. Hydrolysis of agarose by AgaA34 produced neoagarobiose (75 mol%) and neoagarotetraose (25 mol%), whose structures were identified by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy and (13)C NMR. AgaA34 cleaved both neoagarohexaose and neoagarotetraose into neoagarobiose. The k (cat)/K (m) values for hydrolysis agarose and neoagarotetraose were 4.04 x 10(3) and 8.1 x 10(2) s(-1) M(-1), respectively. AgaA34 was resistant to denaturing reagents (sodium dodecyl sulfate and urea). Metal ions were not required for its activity, while reducing reagents (beta-Me and dithiothreitol, DTT) increased its activity by 30%.


Assuntos
Alteromonadaceae/enzimologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Animais , Cromatografia em Gel , Cromatografia por Troca Iônica , DNA Bacteriano/química , DNA Bacteriano/genética , Dissacarídeos/metabolismo , Ditiotreitol/farmacologia , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Galactosídeos/metabolismo , Gastrópodes/microbiologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Mercaptoetanol/farmacologia , Dados de Sequência Molecular , Peso Molecular , Oligossacarídeos/metabolismo , Sefarose/metabolismo , Análise de Sequência de DNA , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Dodecilsulfato de Sódio/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA