Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1181, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864033

RESUMO

Diabetic cardiomyopathy is a primary myocardial injury induced by diabetes with complex pathogenesis. In this study, we identify disordered cardiac retinol metabolism in type 2 diabetic male mice and patients characterized by retinol overload, all-trans retinoic acid deficiency. By supplementing type 2 diabetic male mice with retinol or all-trans retinoic acid, we demonstrate that both cardiac retinol overload and all-trans retinoic acid deficiency promote diabetic cardiomyopathy. Mechanistically, by constructing cardiomyocyte-specific conditional retinol dehydrogenase 10-knockout male mice and overexpressing retinol dehydrogenase 10 in male type 2 diabetic mice via adeno-associated virus, we verify that the reduction in cardiac retinol dehydrogenase 10 is the initiating factor for cardiac retinol metabolism disorder and results in diabetic cardiomyopathy through lipotoxicity and ferroptosis. Therefore, we suggest that the reduction of cardiac retinol dehydrogenase 10 and its mediated disorder of cardiac retinol metabolism is a new mechanism underlying diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Cardiopatias , Doenças Metabólicas , Masculino , Animais , Camundongos , Cardiomiopatias Diabéticas/genética , Vitamina A , Diabetes Mellitus Experimental/complicações , Tretinoína , Camundongos Knockout , Miócitos Cardíacos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética
2.
Life Sci ; 294: 120371, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122795

RESUMO

BACKGROUND: Neonatal hearts have considerable regenerative potential within 7 days post birth (P7), but the rate of regeneration is extremely low after P7. Interestingly, lipid metabolism increases dramatically after P7. The similarities in these age profiles suggests a possible link between cardiac regeneration and lipid metabolism. Acyl CoA synthase long chain family member 1 (ACSL1) is the key enzyme that regulates lipid metabolism. The aim of this study was to identify the role of ACSL1 in the regeneration of cardiomyocytes. METHODS AND RESULTS: The uptake of fatty acids in hearts increased after P7; however, myocardial regeneration was decreased. We profiled an RNA-sequence array of hearts from mice of different ages, including E10.5 (embryonic stage)-, 3-, 7-, 21-, 30-, and 60-day-old mice, and found that the expression of ACSL1 was significantly increased after P7. By establishing ACSL1 knockdown mice with adeno-associated virus (AAV9). Then, we verified that knockdown of ACSL1 enhanced the capacity for myocardial regeneration both in mice and in primary cardiomyocytes. Indeed, ACSL1 knockdown in primary cardiomyocytes promoted the cell cycle progression from G0 to G2 phase by regulating specific factors, which may correlate with the activation of AKT by ACSL1 and withdrawal of FOXO1 from the nucleus. In vivo, knockdown of ACSL1 effectively restored cardiac function and myocardial regeneration in adult mice with myocardial infarction (MI). CONCLUSIONS: ACSL1 possibly induces the loss of the myocardial regenerative potential beginning at P7 in mice, and inhibition of ACSL1 effectively promoted myocardial repair after MI in mice.


Assuntos
Proliferação de Células , Coenzima A Ligases/antagonistas & inibidores , Metabolismo dos Lipídeos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Regeneração , Fatores Etários , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos ICR , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Ratos
3.
Oncol Rep ; 38(3): 1517-1524, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28713903

RESUMO

Heat-shock protein 90 (Hsp 90) acts as a molecular chaperone that maintains protein stability and regulates cell proliferation, survival, differentiation and apoptosis. The present study investigated the effect of Hsp90 inhibition on human acute myeloid leukemia (AML) cells using the novel small-molecule inhibitor SNX-2112. We found that SNX-2112 more potently inhibited KG-1a cell growth than the classical Hsp90 inhibitor 17-(2-dimethylaminoethyl)amino­17-demethoxygeldanamycin as determined by CCK-8 assay. Flow cytometry was used to examine the cell cycle, differentiation, and apoptosis, and western blotting and qRT-PCR were used to analyze the underlying mechanism. The results revealed that low concentrations of SNX-2112 arrested the cells in the G2/M phase and induced their differentiation and apoptosis, possibly by suppressing Akt and inhibitor of κB kinase, a component of the nuclear factor (NF)-κB signaling pathway. We also found that SNX-2112 increased the expression of the differentiation transcription factors PU.1 and CCAAT­enhancer-binding protein-α. Thus, SNX-2112 induced KG-1a cell differentiation, cell cycle arrest and apoptosis via modulation of Akt and NF-κB signaling, suggesting that it is a promising therapeutic agent for the treatment of AML.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/genética , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos
4.
Phytomedicine ; 23(6): 589-96, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27161400

RESUMO

BACKGROUND: Tanshinone IIA (Tan), the main active component of Salvia miltiorrhiza, has been demonstrated to have antioxidant activity. Acetaminophen (APAP), a widely used antipyretic and analgesic, can cause severe hepatotoxicity and liver failure when taken overdose. Oxidative stress has been reported to be involved in APAP-induced liver failure. PURPOSE: This study aimed to investigate the effect of Tan on APAP-induced hepatotoxicity and the underlying mechanisms involved. STUDY DESIGN: C57BL/6J mice were divided into six groups: (1) control, (2) APAP group, (3) APAP+Tan (30mg/kg) group, (4) Tan (30mg/kg) group, (5) APAP+Tan (10mg/kg) group, (6) Tan (10mg/kg) group. Mice in group 3 and 5 were pre-treated with specified dose of Tan by gavage and subsequently injected with an overdose of APAP intraperitoneally (i.p., 300mg/kg). The effect of Tan on Nrf2 pathway was investigated in HepG2 cells and mice. METHODS: Plasma aspartate transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH), liver glutathione (GSH), glutathione transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) levels were determined after mice were sacrificed. Lipid peroxidation and histological examination were performed. The effect of Tan on the Nrf2 pathway was detected by western blotting and qRT-PCR. RESULTS: Tan pretreatment reduced APAP-induced liver injury. Tan was able to activate Nrf2 and increase the expression levels of Nrf2 target genes, including glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H:quinine oxidoreductase 1 (NQO1) and hemeoxygenase-1 (HO-1), in a dose-dependent manner in HepG2 cells. Consistent with our observations in HepG2 cells, Tan increased nuclear Nrf2 accumulation and upregulated mRNA and protein levels of the Nrf2 target genes GCLC, NQO1 and HO-1 in C57BL/6J mice compared with mice treated with APAP alone. CONCLUSIONS: Our results demonstrate that Tan pretreatment could protect the liver from APAP-induced hepatic injury by activating the Nrf2 pathway. Tan may provide a new strategy for the protection against APAP-induced liver injury.


Assuntos
Abietanos/farmacologia , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Salvia miltiorrhiza/química
5.
Phytomedicine ; 22(10): 894-901, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26321738

RESUMO

BACKGROUND: Triptolide, an active ingredient extracted from the Chinese herb Tripterygium wilfordii Hook f., has multiple pharmacological properties, including anti-inflammatory, immune-modulatory, and anti-proliferative activities. However, the hepatotoxicity of triptolide always limits its clinical applications. HYPOTHESIS/PURPOSE: Farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays a key role in hepatoprotection through the maintenance of liver metabolism homeostasis. This study explored the role of FXR in triptolide-induced cytotoxicity and investigated whether activation of FXR can protect against triptolide-induced liver injury. STUDY DESIGN: The role of FXR in triptolide-induced cytotoxicity was investigated in HepG2 cells. In addition, the protective effect of the selective FXR agonist GW4064 on triptolide-induced hepatotoxicity was explored in BALB/c mice. METHODS: HepG2 cells were transient transfected with FXR expression plasmid or FXR-siRNA. The cytotoxicity was compared using the MTT assay. The extent of liver injury was assessed by histopathology and serum aminotransferases. The expression of FXR and its target genes were detected by Western blot and qRT-PCR. RESULTS: The transient overexpression of FXR protected against triptolide-induced cell death, whereas FXR knockdown with a specific small interfering RNA resulted in increased cytotoxicity. In BALB/c mice, treatment with the FXR agonist GW4064 attenuated triptolide-induced liver dysfunction, structural damage, glutathione depletion and lipid peroxidation. Moreover, the livers of GW4064-treated mice showed increased expression of FXR and several related target genes involved in phase II and phase III xenobiotic metabolism. CONCLUSION: Taken together, these results indicate that activation of FXR attenuates triptolide-induced hepatotoxicity and provide direct implications for the development of novel therapeutic strategies against triptolide-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Diterpenos/toxicidade , Fígado/efeitos dos fármacos , Fenantrenos/toxicidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Compostos de Epóxi/toxicidade , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Isoxazóis/farmacologia , Masculino , Camundongos Endogâmicos BALB C , RNA Interferente Pequeno
6.
PLoS One ; 9(7): e100685, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24988078

RESUMO

Triptolide, the major active component of Tripterygium wilfordii Hook f. (TWHF), has a wide range of pharmacological activities. However, the toxicities of triptolide, particularly the hepatotoxicity, limit its clinical application. The hepatotoxicity of triptolide has not been well characterized yet. The aim of this study was to investigate the role of NF-E2-related factor 2 (Nrf2) in triptolide-induced toxicity and whether activation of Nrf2 could protect against triptolide-induced hepatotoxicity. The results showed that triptolide caused oxidative stress and cell damage in HepG2 cells, and these toxic effects could be aggravated by Nrf2 knockdown or be counteracted by overexpression of Nrf2. Treatment with a typical Nrf2 agonist, sulforaphane (SFN), attenuated triptolide-induced liver dysfunction, structural damage, glutathione depletion and decrease in antioxidant enzymes in BALB/C mice. Moreover, the hepatoprotective effect of SFN on triptolide-induced liver injury was associated with the activation of Nrf2 and its downstream targets. Collectively, these results indicate that Nrf2 activation protects against triptolide-induced hepatotoxicity.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Diterpenos/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Fenantrenos/efeitos adversos , Animais , Anticarcinógenos/farmacologia , Antineoplásicos Alquilantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Diterpenos/farmacologia , Compostos de Epóxi/efeitos adversos , Compostos de Epóxi/farmacologia , Células Hep G2 , Humanos , Isotiocianatos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Fenantrenos/farmacologia , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA