Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Proced Online ; 25(1): 30, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017376

RESUMO

BACKGROUND: Ischemic stroke (IS) occurs when a blood vessel supplying the brain becomes obstructed, resulting in cerebral ischemia. This type of stroke accounts for approximately 87% of all strokes. Globally, IS leads to high mortality and poor prognosis and is associated with neuroinflammation and neuronal apoptosis. D-allose is a bio-substrate of glucose that is widely expressed in many plants. Our previous study showed that D-allose exerted neuroprotective effects against acute cerebral ischemic/reperfusion (I/R) injury by reducing neuroinflammation. Here, we aimed to clarify the beneficial effects D-allose in suppressing IS-induced neuroinflammation damage, cytotoxicity, neuronal apoptosis and neurological deficits and the underlying mechanism in vitro and in vivo. METHODS: In vivo, an I/R model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R) in C57BL/6 N mice, and D-allose was given by intraperitoneal injection within 5 min after reperfusion. In vitro, mouse hippocampal neuronal cells (HT-22) with oxygen-glucose deprivation and reperfusion (OGD/R) were established as a cell model of IS. Neurological scores, some cytokines, cytotoxicity and apoptosis in the brain and cell lines were measured. Moreover, Gal-3 short hairpin RNAs, lentiviruses and adeno-associated viruses were used to modulate Gal-3 expression in neurons in vitro and in vivo to reveal the molecular mechanism. RESULTS: D-allose alleviated cytotoxicity, including cell viability, LDH release and apoptosis, in HT-22 cells after OGD/R, which also alleviated brain injury, as indicated by lesion volume, brain edema, neuronal apoptosis, and neurological functional deficits, in a mouse model of I/R. Moreover, D-allose decreased the release of inflammatory factors, such as IL-1ß, IL-6 and TNF-α. Furthermore, the expression of Gal-3 was increased by I/R in wild-type mice and HT-22 cells, and this factor further bound to TLR4, as confirmed by three-dimensional structure prediction and Co-IP. Silencing the Gal-3 gene with shRNAs decreased the activation of TLR4 signaling and alleviated IS-induced neuroinflammation, apoptosis and brain injury. Importantly, the loss of Gal-3 enhanced the D-allose-mediated protection against I/R-induced HT-22 cell injury, inflammatory insults and apoptosis, whereas activation of TLR4 by the selective agonist LPS increased the degree of neuronal injury and abolished the protective effects of D-allose. CONCLUSIONS: In summary, D-allose plays a crucial role in inhibiting inflammation after IS by suppressing Gal-3/TLR4/PI3K/AKT signaling pathway in vitro and in vivo.

2.
bioRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37609202

RESUMO

It has been shown that Hi-C can be used as a powerful tool to detect structural variations (SVs) and enhancer hijacking events. However, there has been no existing programs that can directly visualize and detect such events on a personal computer, which hinders the broad adaption of the technology for intuitive discovery in cancer studies. Here, we introduce the EagleC Explorer, a desktop software that is specifically designed for exploring Hi-C and other chromatin contact data in cancer genomes. EagleC Explorer has a set of unique features, including 1) conveniently visualizing global and local Hi-C data; 2) interactively detecting SVs on a Hi-C map for any user-selected region on screen within seconds, using a deep-learning model; 3) reconstructing local Hi-C map surrounding user-provided SVs and generating publication-quality figures; 4) detecting enhancer hijacking events for any user-suggested regions on screen. In addition, EagleC Explorer can also incorporate other genomic tracks such as RNA-Seq or ChIP-Seq to facilitate scientists for integrative data analysis and making novel discoveries.

3.
Nat Commun ; 14(1): 4958, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587113

RESUMO

The immediate processing of whole blood specimen is required in circulating tumor cell-based liquid biopsy. Reliable blood specimen stabilization towards preserving circulating tumor cells can enable more extensive geographic sharing for precise rare-cell technology, but remains challenging due to the fragility and rarity of circulating tumor cells. Herein, we establish a zwitterionic magnetic microgel platform to stabilize whole blood specimen for long-term hypothermic preservation of model circulating tumor cells. We show in a cohort study of 20 cancer patients that blood samples can be preserved for up to 7 days without compromising circulating tumor cell viability and RNA integrity, thereby doubling the viable preservation duration. We demonstrate that the 7-day microgel-preserved blood specimen is able to reliably detect cancer-specific transcripts, similar to fresh blood specimens, while there are up/down expression regulation of 1243 genes in model circulating tumor cells that are preserved by commercial protectant. Mechanistically, we find that the zwitterionic microgel assembly counters the cold-induced excessive reactive oxygen species and platelet activation, as well as extracellular matrix loss-induced cell anoikis, to prevent circulating tumor cell loss in the whole blood sample. The present work could prove useful for the development of blood-based noninvasive diagnostics.


Assuntos
Microgéis , Células Neoplásicas Circulantes , Humanos , Estudos de Coortes , Anoikis , Matriz Extracelular
4.
Cancer Res ; 83(9): 1517-1530, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36847778

RESUMO

SIGNIFICANCE: Comprehensive profiling of the enhancer landscape and 3D genome structure in liposarcoma identifies extensive enhancer-oncogene coamplification and enhancer hijacking events, deepening the understanding of how oncogenes are regulated in cancer.


Assuntos
Lipossarcoma , Oncogenes , Humanos , Elementos Facilitadores Genéticos
5.
Nature ; 611(7935): 387-398, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289338

RESUMO

Acute myeloid leukaemia (AML) represents a set of heterogeneous myeloid malignancies, and hallmarks include mutations in epigenetic modifiers, transcription factors and kinases1-5. The extent to which mutations in AML drive alterations in chromatin 3D structure and contribute to myeloid transformation is unclear. Here we use Hi-C and whole-genome sequencing to analyse 25 samples from patients with AML and 7 samples from healthy donors. Recurrent and subtype-specific alterations in A/B compartments, topologically associating domains and chromatin loops were identified. RNA sequencing, ATAC with sequencing and CUT&Tag for CTCF, H3K27ac and H3K27me3 in the same AML samples also revealed extensive and recurrent AML-specific promoter-enhancer and promoter-silencer loops. We validated the role of repressive loops on their target genes by CRISPR deletion and interference. Structural variation-induced enhancer-hijacking and silencer-hijacking events were further identified in AML samples. Hijacked enhancers play a part in AML cell growth, as demonstrated by CRISPR screening, whereas hijacked silencers have a downregulating role, as evidenced by CRISPR-interference-mediated de-repression. Finally, whole-genome bisulfite sequencing of 20 AML and normal samples revealed the delicate relationship between DNA methylation, CTCF binding and 3D genome structure. Treatment of AML cells with a DNA hypomethylating agent and triple knockdown of DNMT1, DNMT3A and DNMT3B enabled the manipulation of DNA methylation to revert 3D genome organization and gene expression. Overall, this study provides a resource for leukaemia studies and highlights the role of repressive loops and hijacked cis elements in human diseases.


Assuntos
Genoma Humano , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Metilação de DNA , Leucemia Mieloide Aguda/genética , Genoma Humano/genética , Regiões Promotoras Genéticas , Elementos Facilitadores Genéticos , Inativação Gênica , Reprodutibilidade dos Testes , Sistemas CRISPR-Cas , Análise de Sequência , DNA (Citosina-5-)-Metiltransferases , Regulação Leucêmica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA