Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38692971

RESUMO

The predominant genetic defense mechanism against soybean cyst nematode (SCN) in 95% of the North America market is under threat by virulent SCN populations. Usovsky et al. identified GmSNAP02 as an SCN susceptibility gene through fine-mapping of unique bi-parental populations. Loss-of-function of GmSNAP02 confers enhanced resistance to more virulent SCN.

2.
Trends Parasitol ; 39(1): 7-9, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36443162

RESUMO

Vitamin deficiencies are known to cause disorders in human beings. Siddique et al. discovered that vitamin B5 biosynthesis in cyst nematodes requires steps in their host plants. Disruption of an Arabidopsis thaliana 'susceptibility gene', which is involved in the production of vitamin B5 precursors, results in reduced parasitism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nematoides , Animais , Humanos , Ácido Pantotênico , Nematoides/genética , Arabidopsis/genética
3.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232986

RESUMO

In this study, we presented an AISID method extending AlphaFold-Multimer's success in structure prediction towards identifying specific protein interactions with an optimized AISIDscore. The method was tested to identify the binding proteins in 18 human TNFSF (Tumor Necrosis Factor superfamily) members for each of 27 human TNFRSF (TNF receptor superfamily) members. For each TNFRSF member, we ranked the AISIDscore among the 18 TNFSF members. The correct pairing resulted in the highest AISIDscore for 13 out of 24 TNFRSF members which have known interactions with TNFSF members. Out of the 33 correct pairing between TNFSF and TNFRSF members, 28 pairs could be found in the top five (including 25 pairs in the top three) seats in the AISIDscore ranking. Surprisingly, the specific interactions between TNFSF10 (TNF-related apoptosis-inducing ligand, TRAIL) and its decoy receptors DcR1 and DcR2 gave the highest AISIDscore in the list, while the structures of DcR1 and DcR2 are unknown. The data strongly suggests that AlphaFold-Multimer might be a useful computational screening tool to find novel specific protein bindings. This AISID method may have broad applications in protein biochemistry, extending the application of AlphaFold far beyond structure predictions.


Assuntos
Receptores do Fator de Necrose Tumoral , Ligante Indutor de Apoptose Relacionado a TNF , Apoptose , Inteligência Artificial , Humanos , Ligação Proteica , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Trends Plant Sci ; 27(9): 837-839, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660343

RESUMO

Despite its critical role in repelling damaging insects, our understanding of nonhost resistance against herbivores remains very limited. Recently, Bai et al. identified a novel caffeoylputrescine-green leaf volatile (GLV) compound in wild tobacco plants that confers nonhost resistance to Empoasca leafhoppers through high-throughput multi-omics analyses.


Assuntos
Hemípteros , Animais , Herbivoria , Hexobarbital , Insetos , Folhas de Planta/genética
5.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35457090

RESUMO

Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant-environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.


Assuntos
Sulfeto de Hidrogênio , Reguladores de Crescimento de Plantas , Gases/metabolismo , Sulfeto de Hidrogênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico
6.
J Agric Food Chem ; 69(45): 13524-13532, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34735148

RESUMO

Self-resistance genes are deployed by many microbial producers of bioactive natural products to avoid self-toxicity. Myxin, a di-N-oxide phenazine produced by Lysobacter antibioticus OH13, is toxic to many microorganisms and tumor cells. Here, we uncovered a self-defense strategy featuring the antibiotic biosynthesis monooxygenase (ABM) family protein LaPhzX for myxin degradation. The gene LaPhzX is located in the myxin biosynthetic gene cluster (LaPhz), and its deletion resulted in bacterial mutants that are more sensitive to myxin. In addition, the LaPhzX mutants showed increased myxin accumulation and reduction of its derivative, compound 4, compared to the wild-type strain. Meanwhile, in vitro biochemical assays demonstrated that LaPhzX significantly degraded myxin in the presence of nicotinamide adenine dinucleotide phosphate (NADPH), nicotinamide adenine dinucleotide (NADH), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD). In addition, heterologous expression of LaPhzX in Xanthomonas oryzae pv. oryzae and Escherichia coli increased their resistance to myxin. Overall, our work illustrates a monooxygenase-mediated self-resistance mechanism for phenazine antibiotic biosynthesis.


Assuntos
Oxigenases de Função Mista , Óxidos , Proteínas de Bactérias/genética , Mononucleotídeo de Flavina , Lysobacter , Oxigenases de Função Mista/genética , Fenazinas , Xanthomonas
7.
Trends Plant Sci ; 26(7): 668-670, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33985900

RESUMO

The most prominent problem in the current citrus industry worldwide is the epidemic of citrus Huanglongbing (HLB), also known as greening disease. Huang et al. identified a stable peptide, which has antimicrobial activities and induces systemic immune response against HLB, from Australian finger lime. This peptide effectively suppresses disease symptoms in citrus and protects healthy trees against this disease.


Assuntos
Citrus , Rhizobiaceae , Austrália , Peptídeos , Doenças das Plantas
8.
Phytopathology ; 108(5): 542-551, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29256829

RESUMO

Xanthomonas oryzae pv. oryzicola is an X. oryzae pathovar that causes bacterial leaf streak in rice. In this study, we performed functional characterization of a nine-gene his operon in X. oryzae pv. oryzicola. Sequence analysis indicates that this operon is highly conserved in Xanthomonas spp. Auxotrophic assays confirmed that the his operon was involved in histidine biosynthesis. We found that two genes within this operon, trpR and hisB, were required for virulence and bacterial growth in planta. Further research revealed that trpR and hisB play different roles in X. oryzae pv. oryzicola. The trpR acts as a transcriptional repressor and could negatively regulate the expression of hisG, -D, -C, -B, -H, -A, and -F. hisB, which encodes a bifunctional enzyme implicated in histidine biosynthesis, was shown to be required for xanthomonadin production in X. oryzae pv. oryzicola. The disruption of hisB reduced the transcriptional expression of five known shikimate pathway-related genes xanB2, aroE, aroA, aroC, and aroK. We found that the his operon in X. oryzae pv. oryzicola is not involved in hypersensitive response in nonhost tobacco plants. Collectively, our results revealed that two genes in histidine biosynthesis operon play an important role in the pathogenicity of X. oryzae pv. oryzicola Rs105.


Assuntos
Histidina/biossíntese , Óperon , Oryza/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/genética , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Virulência
9.
Sci Rep ; 6: 32309, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572278

RESUMO

White spot syndrome virus (WSSV) is one of the major and most serious pathogen in the shrimp industry. As one of the most abundant envelope protein, VP24 acts as a core protein interacting with other structure proteins and plays an important role in virus assembly and infection. Here, we have presented the crystal structure of VP24 from WSSV. In the structure, VP24 consists of a nine-stranded ß-barrel fold with mostly antiparallel ß-strands, and the loops extending out the ß-barrel at both N-terminus and C-terminus, which is distinct to those of the other two major envelope proteins VP28 and VP26. Structural comparison of VP24 with VP26 and VP28 reveals opposite electrostatic surface potential properties of them. These structural differences could provide insight into their differential functional mechanisms and roles for virus assembly and infection. Moreover, the structure reveals a trimeric assembly, suggesting a likely natural conformation of VP24 in viral envelope. Therefore, in addition to confirming the evolutionary relationship among the three abundant envelope proteins of WSSV, our structural studies also facilitate a better understanding of the molecular mechanism underlying special roles of VP24 in WSSV assembly and infection.


Assuntos
Mutação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vírus da Síndrome da Mancha Branca 1/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Cristalografia por Raios X , Modelos Moleculares , Penaeidae/virologia , Conformação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Proteínas do Envelope Viral/metabolismo , Vírus da Síndrome da Mancha Branca 1/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia
10.
Nature ; 506(7488): 391-5, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24390346

RESUMO

Cytosine residues in mammalian DNA occur in five forms: cytosine (C), 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). The ten-eleven translocation (Tet) dioxygenases convert 5mC to 5hmC, 5fC and 5caC in three consecutive, Fe(II)- and α-ketoglutarate-dependent oxidation reactions. The Tet family of dioxygenases is widely distributed across the tree of life, including in the heterolobosean amoeboflagellate Naegleria gruberi. The genome of Naegleria encodes homologues of mammalian DNA methyltransferase and Tet proteins. Here we study biochemically and structurally one of the Naegleria Tet-like proteins (NgTet1), which shares significant sequence conservation (approximately 14% identity or 39% similarity) with mammalian Tet1. Like mammalian Tet proteins, NgTet1 acts on 5mC and generates 5hmC, 5fC and 5caC. The crystal structure of NgTet1 in complex with DNA containing a 5mCpG site revealed that NgTet1 uses a base-flipping mechanism to access 5mC. The DNA is contacted from the minor groove and bent towards the major groove. The flipped 5mC is positioned in the active-site pocket with planar stacking contacts, Watson-Crick polar hydrogen bonds and van der Waals interactions specific for 5mC. The sequence conservation between NgTet1 and mammalian Tet1, including residues involved in structural integrity and functional significance, suggests structural conservation across phyla.


Assuntos
5-Metilcitosina/metabolismo , DNA/química , DNA/metabolismo , Dioxigenases/química , Dioxigenases/metabolismo , Naegleria/enzimologia , 5-Metilcitosina/química , Sequência de Aminoácidos , Animais , Domínio Catalítico/genética , Sequência Conservada , Cristalografia por Raios X , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Células HEK293 , Humanos , Ligação de Hidrogênio , Camundongos , Oxigenases de Função Mista/química , Modelos Moleculares , Dados de Sequência Molecular , Naegleria/genética , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 9): 1242-52, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22948926

RESUMO

The crystal structure of the 11.14 kDa orphan ORF 1382 from Archaeoglobus fulgidus (AF1382) has been determined by sulfur SAD phasing using a moderately diffracting crystal and 1.9 Å wavelength synchrotron X-rays. AF1382 was selected as a structural genomics target by the Southeast Collaboratory for Structural Genomics (SECSG) since sequence analyses showed that it did not belong to the Pfam-A database and thus could represent a novel fold. The structure was determined by exploiting longer wavelength X-rays and data redundancy to increase the anomalous signal in the data. AF1382 is a 95-residue protein containing five S atoms associated with four methionine residues and a single cysteine residue that yields a calculated Bijvoet ratio (ΔF(anom)/F) of 1.39% for 1.9 Å wavelength X-rays. Coupled with an average Bijvoet redundancy of 25 (two 360° data sets), this produced an excellent electron-density map that allowed 69 of the 95 residues to be automatically fitted. The S-SAD model was then manually completed and refined (R = 23.2%, R(free) = 26.8%) to 2.3 Å resolution (PDB entry 3o3k). High-resolution data were subsequently collected from a better diffracting crystal using 0.97 Å wavelength synchrotron X-rays and the S-SAD model was refined (R = 17.9%, R(free) = 21.4%) to 1.85 Å resolution (PDB entry 3ov8). AF1382 has a winged-helix-turn-helix structure common to many DNA-binding proteins and most closely resembles the N-terminal domain (residues 1-82) of the Rio2 kinase from A. fulgidus, which has been shown to bind DNA, and a number of MarR-family transcriptional regulators, suggesting a similar DNA-binding function for AF1382. The analysis also points out the advantage gained from carrying out data reduction and structure determination on-site while the crystal is still available for further data collection.


Assuntos
Proteínas Arqueais/química , Archaeoglobus fulgidus/química , Enxofre/química , Cristalografia por Raios X , Modelos Moleculares , Fases de Leitura Aberta , Estrutura Terciária de Proteína
12.
J Mol Biol ; 414(4): 563-77, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22033482

RESUMO

A unique feature of the class-C-type sortases, enzymes essential for Gram-positive pilus biogenesis, is the presence of a flexible "lid" anchored in the active site. However, the mechanistic details of the "lid" displacement, suggested to be a critical prelude for enzyme catalysis, are not yet known. This is partly due to the absence of enzyme-substrate and enzyme-inhibitor complex crystal structures. We have recently described the crystal structures of the Streptococcus agalactiae SAG2603 V/R sortase SrtC1 in two space groups (type II and type III) and that of its "lid" mutant and proposed a role of the "lid" as a protector of the active-site hydrophobic environment. Here, we report the crystal structures of SAG2603 V/R sortase C1 in a different space group (type I) and that of its complex with a small-molecule cysteine protease inhibitor. We observe that the catalytic Cys residue is covalently linked to the small-molecule inhibitor without lid displacement. However, the type I structure provides a view of the sortase SrtC1 lid displacement while having structural elements similar to a substrate sorting motif suitably positioned in the active site. We propose that these major conformational changes seen in the presence of a substrate mimic in the active site may represent universal features of class C sortase substrate recognition and enzyme activation.


Assuntos
Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/metabolismo , Streptococcus agalactiae/enzimologia , Domínio Catalítico , Cristalografia por Raios X/métodos , Cisteína/química , Cisteína/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Modelos Moleculares , Ligação Proteica , Especificidade por Substrato
13.
Nature ; 447(7142): 284-8, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17450127

RESUMO

The bacterial plant pathogen Pseudomonas syringae injects effector proteins into host cells through a type III protein secretion system to cause disease. The enzymatic activities of most of P. syringae effectors and their targets remain obscure. Here we show that the type III effector HopU1 is a mono-ADP-ribosyltransferase (ADP-RT). HopU1 suppresses plant innate immunity in a manner dependent on its ADP-RT active site. The HopU1 substrates in Arabidopsis thaliana extracts were RNA-binding proteins that possess RNA-recognition motifs (RRMs). A. thaliana knockout lines defective in the glycine-rich RNA-binding protein GRP7 (also known as AtGRP7), a HopU1 substrate, were more susceptible than wild-type plants to P. syringae. The ADP-ribosylation of GRP7 by HopU1 required two arginines within the RRM, indicating that this modification may interfere with GRP7's ability to bind RNA. Our results suggest a pathogenic strategy where the ADP-ribosylation of RNA-binding proteins quells host immunity by affecting RNA metabolism and the plant defence transcriptome.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/enzimologia , Pseudomonas syringae/patogenicidade , Proteínas de Ligação a RNA/metabolismo , Adenosina Difosfato Ribose/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Imunidade Inata/genética , Imunidade Inata/imunologia , Mutação/genética , Peptídeos/metabolismo , Doenças das Plantas/genética , Pseudomonas syringae/imunologia , Proteínas de Ligação a RNA/genética , Especificidade por Substrato , Nicotiana/metabolismo , Virulência
14.
J Bacteriol ; 188(17): 6060-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16923873

RESUMO

The bacterial plant pathogen Pseudomonas syringae requires a type III protein secretion system (TTSS) to cause disease. The P. syringae TTSS is encoded by the hrp-hrc gene cluster. One of the genes within this cluster, hrpJ, encodes a protein with weak similarity to YopN, a type III secreted protein from the animal pathogenic Yersinia species. Here, we show that HrpJ is secreted in culture and translocated into plant cells by the P. syringae pv. tomato DC3000 TTSS. A DC3000 hrpJ mutant, UNL140, was greatly reduced in its ability to cause disease symptoms and multiply in Arabidopsis thaliana. UNL140 exhibited a reduced ability to elicit a hypersensitive response (HR) in nonhost tobacco plants. UNL140 was unable to elicit an AvrRpt2- or AvrB1-dependent HR in A. thaliana but maintained its ability to secrete AvrB1 in culture via the TTSS. Additionally, UNL140 was defective in its ability to translocate the effectors AvrPto1, HopB1, and AvrPtoB. Type III secretion assays showed that UNL140 secreted HrpA1 and AvrPto1 but was unable to secrete HrpZ1, a protein that is normally secreted in culture in relatively large amounts, into culture supernatants. Taken together, our data indicate that HrpJ is a type III secreted protein that is important for pathogenicity and the translocation of effectors into plant cells. Based on the failure of UNL140 to secrete HrpZ1, HrpJ may play a role in controlling type III secretion, and in its absence, specific accessory proteins, like HrpZ1, may not be extracellularly localized, resulting in disabled translocation of effectors into plant cells.


Assuntos
Arabidopsis/microbiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Proteínas de Bactérias/fisiologia , Locomoção , Doenças das Plantas/microbiologia
15.
Mol Microbiol ; 49(2): 377-87, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12828636

RESUMO

The bacterial plant pathogen Pseudomonas syringae possesses a type III protein secretion system that delivers many virulence proteins into plant cells. A subset of these proteins (called Avr proteins) is recognized by the plant's innate immune system and triggers defences. One defence-associated response is the hypersensitive response (HR), a programmed cell death (PCD) of plant tissue. We have previously identified HopPtoD2 as a type III secreted protein from P. s. pv. tomato DC3000. Sequence analysis revealed that an N-terminal domain shared homology with AvrPphD and a C-terminal domain was similar to protein tyrosine phosphatases (PTPs). We demonstrated that purified HopPtoD2 possessed PTP activity and this activity required a conserved catalytic Cys residue (Cys(378)). Interestingly, HopPtoD2 was capable of suppressing the HR elicited by an avirulent P. syringae strain on Nicotiana benthamiana. HopPtoD2 derivatives that lacked Cys(378) no longer suppressed the HR indicating that HR suppression required PTP activity. A constitutively active MAPK kinase, called NtMEK2DD, is capable of eliciting an HR-like cell death when transiently expressed in tobacco. When NtMEK2DD and HopPtoD2 were co-delivered into plant cells, the HR was suppressed indicating that HopPtoD2 acts downstream of NtMEK2DD. DC3000 hopPtoD2 mutants were slightly reduced in their ability to multiply in planta and displayed an enhanced ability to elicit an HR. The identification of HopPtoD2 as a PTP and a PCD suppressor suggests that the inactivation of MAPK pathways is a virulence strategy utilized by bacterial plant pathogens.


Assuntos
Apoptose , Proteínas de Bactérias/metabolismo , Nicotiana/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Pseudomonas syringae/metabolismo , Estrutura Terciária de Proteína , Pseudomonas syringae/patogenicidade , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA