Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Plant Commun ; 5(6): 100852, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38409783

RESUMO

Climate change is resulting in more frequent and rapidly changing temperatures at both extremes that severely affect the growth and production of plants, particularly crops. Oxidative stress caused by high temperatures is one of the most damaging factors for plants. However, the role of hydrogen peroxide (H2O2) in modulating plant thermotolerance is largely unknown, and the regulation of photorespiration essential for C3 species remains to be fully clarified. Here, we report that heat stress promotes H2O2 accumulation in chloroplasts and that H2O2 stimulates sulfenylation of the chloroplast-localized photorespiratory enzyme 2-phosphoglycolate phosphatase 1 (PGLP1) at cysteine 86, inhibiting its activity and promoting the accumulation of the toxic metabolite 2-phosphoglycolate. We also demonstrate that PGLP1 has a positive function in plant thermotolerance, as PGLP1 antisense lines have greater heat sensitivity and PGLP1-overexpressing plants have higher heat-stress tolerance than the wild type. Together, our results demonstrate that heat-induced H2O2 in chloroplasts sulfenylates and inhibits PGLP1 to modulate plant thermotolerance. Furthermore, targeting CATALASE2 to chloroplasts can largely prevent the heat-induced overaccumulation of H2O2 and the sulfenylation of PGLP1, thus conferring thermotolerance without a plant growth penalty. These findings reveal that heat-induced H2O2 in chloroplasts is important for heat-caused plant damage.


Assuntos
Peróxido de Hidrogênio , Termotolerância , Peróxido de Hidrogênio/metabolismo , Termotolerância/efeitos dos fármacos , Termotolerância/genética , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Temperatura Alta , Resposta ao Choque Térmico/efeitos dos fármacos
2.
J Nutr Biochem ; 125: 109569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185346

RESUMO

Spermidine exerts protective roles in obesity, while the mechanism of spermidine in adipose tissue thermogenesis remains unclear. The present study first investigated the effect of spermidine on cold-stimulation and ß3-adrenoceptor agonist-induced thermogenesis in lean and high-fat diet-induced obese mice. Next, the role of spermidine on glucose and lipid metabolism in different types of adipose tissue was determined. Here, we found that spermidine supplementation did not affect cold-stimulated thermogenesis in lean mice, while significantly promoting the activation of adipose tissue thermogenesis under cold stimulation and ß3-adrenergic receptor agonist treatment in obese mice. Spermidine treatment markedly enhanced glucose and lipid metabolism in adipose tissues, and these results were associated with the activated autophagy pathway. Moreover, spermidine up-regulated fibroblast growth factor 21 (FGF21) signaling and its downstream pathway, including PI3K/AKT and AMPK pathways in vivo and in vitro. Knockdown of Fgf21 or inhibition of PI3K/AKT and AMPK pathways in brown adipocytes abolished the thermogenesis-promoting effect of spermidine, suggesting that the effect of spermidine on adipose tissue thermogenesis might be regulated by FGF21 signaling via the PI3K/AKT and AMPK pathways. The present study provides new insight into the mechanism of spermidine on obesity and its metabolic complications, thereby laying a theoretical basis for the clinical application of spermidine.


Assuntos
Tecido Adiposo Marrom , Espermidina , Camundongos , Animais , Espermidina/farmacologia , Espermidina/metabolismo , Espermidina/uso terapêutico , Tecido Adiposo Marrom/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Obesos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tecido Adiposo/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Termogênese , Tecido Adiposo Branco/metabolismo , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139141

RESUMO

The two-component system (TCS), consisting of histidine kinases (HKs), histidine phosphotransfer proteins (HPs) and response regulators (RRs) in eukaryotes, plays pivotal roles in regulating plant growth, development, and responses to environment stimuli. However, the TCS genes were poorly characterized in rapeseed, which is an important tetraploid crop in Brassicaceae. In this work, a total of 182 BnaTCS genes were identified, including 43 HKs, 16 HPs, and 123 RRs, which was more than that in other crops due to segmental duplications during the process of polyploidization. It was significantly different in genetic diversity between the three subfamilies, and some members showed substantial genetic differentiation among the three rapeseed ecotypes. Several hormone- and stress-responsive cis-elements were identified in the putative promoter regions of BnaTCS genes. Furthermore, the expression of BnaTCS genes under abiotic stresses, exogenous phytohormone, and biotic stresses was analyzed, and numerous candidate stress-responsive genes were screened out. Meanwhile, using a natural population with 505 B. napus accessions, we explored the genetic effects of BnaTCS genes on salt tolerance by association mapping analysis and detected some significant association SNPs/genes. The result will help to further understand the functions of TCS genes in the developmental and stress tolerance improvement in B. napus.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/metabolismo , Histidina/metabolismo , Genes de Plantas , Estresse Fisiológico/genética , Brassica rapa/genética
4.
Biomacromolecules ; 24(12): 5964-5976, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37938159

RESUMO

Metal-organic frameworks (MOFs) are promising drug-delivering platforms for their intrinsic capability of loading and releasing different cargoes. To further extend their biomedical practices, the development of collaborative MOF systems with good biocompatibility and synergistic efficacy is essential. Herein, the near-infrared and pH dual-response collaborative zeolitic imidazolate framework-8 (ZIF-8) platform SOR@ZIF-8@PDA (SZP) was constructed, in which the chemotherapeutic drug sorafenib (SOR) was encapsulated in ZIF-8 and via polydopamine (PDA) coating on ZIF-8 by hierarchical self-assembly. PDA coating serves as a photothermal agent for PPT while reducing the toxicity of ZIF-8. SZP achieves intelligent release of therapeutic drugs by responding to the lower pH of the tumor microenvironment and thermal stimulation generated by near-infrared light irradiation. In addition, under light irradiation, SZP could effectively realize treatment of cancer cells through synergistic chemo-photothermal therapy, as evidenced by the enhanced cell apoptosis, inhibited tumor cell proliferation and migration. This collaborative MOFs system showed excellent biocompatibility and antitumor ability in vivo on a mouse HepG2 tumor model. Our results demonstrated that PDA-modified MOFs exhibited a fantastic good development prospect in biomedical applications.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estruturas Metalorgânicas , Nanopartículas , Zeolitas , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Fototerapia , Imidazóis , Nanopartículas/uso terapêutico , Liberação Controlada de Fármacos , Microambiente Tumoral
5.
Macromol Biosci ; 23(11): e2300151, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37295777

RESUMO

Insufficient accumulation of drug at the tumor site and the low drug response are the main reason for the unsatisfactory effect of cancer therapy. Delivery drugs exquisitely to subcellular level can be employed to reduce side effects, and expand the therapeutic window. Herein, a triphenylphosphine (TPP) modified lipid nanoparticles is designed which are loaded with the photosensitizer indocyanine green (ICG) and chemotherapeutic paclitaxel (PTX) for mitochondria-targeted chemo-phototherapy. Owing to the movement of majority mitochondria along microtubules in cytoplasm, mitochondrial targeting may enable PTX to act more effectively. Meanwhile, the existence of chemo-drug potentiates the phototherapy to achieve synergistic anti-tumor activity. As expected, mitochondria targeting nanomedicine (M-ICG-PTX NPs) showed improved mitochondria targeted cellular distribution and enhanced cell cytotoxicity in vitro. Also, M-ICG-PTX NPs exhibited higher tumor growth inhibition ability by promoting cell apoptosis and oxeiptosis pathway, and high effective inhibition of primary tumor growth and tumor metastasis. Taken together, M-ICG-PTX NPs may be promising nanoplatforms to achieve potent therapeutic effect for the combination of chemo- and photo-therapy (PTT).


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Linhagem Celular Tumoral , Fototerapia , Paclitaxel/farmacologia , Verde de Indocianina/farmacologia , Estresse Oxidativo , Nanopartículas/ultraestrutura , Mitocôndrias
6.
Life Sci ; 324: 121699, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061125

RESUMO

AIMS: Inflammatory bowel disease (IBD) patients are accompanied by impaired intestinal barrier integrity and gut microbiota dysbiosis. Strategies targeting the gut microbiota are potential therapies for preventing and ameliorating IBD. MAIN METHODS: The potential roles of two probiotic stains, Bifidobacterium longum BL986 (BL986) and Lactobacillus casei LC122 (LC122), on intestinal mucosal barrier function and microbiota in IBD zebrafish of different ages were investigated. KEY FINDINGS: BL986 and LC122 treatment promoted the development and increased the microbiota diversity in larval zebrafish. Both probiotic treatment ameliorated mortality, promoted intestinal mucus secretion, and reduced the expression of inflammatory markers, thereby improving intestinal mucosal barrier function in dextran sulfate sodium salt (DSS)-induced ulcerative colitis (UC) and 2,4,6-trinitro-benzenesulfonicacid (TNBS)-induced Crohn's disease (CD) models in zebrafish. Moreover, the composition and function of microbiota were altered in IBD zebrafish, and probiotics treatment displayed prominent microbiota features. BL986 was more potent in the DSS-induced UC model, and increased the abundance of Faecalibaculum and butyric acid levels. LC122 exerted better protection against TNBS-induced CD, and increased the abundance of Enhydrobacter and acetic acid levels. Furthermore, the effect of probiotics was stronger in larval and aged zebrafish. CONCLUSION: The impact of probiotics on IBD might differ from the subtypes of IBD and the age of the zebrafish, suggesting the types of disease and age should be taken into full consideration during the practical usage of probiotics.


Assuntos
Colite Ulcerativa , Colite , Doença de Crohn , Doenças Inflamatórias Intestinais , Microbiota , Probióticos , Animais , Peixe-Zebra , Lactobacillus , Bifidobacterium , Colite Ulcerativa/microbiologia , Probióticos/farmacologia , Probióticos/uso terapêutico , Sulfato de Dextrana , Modelos Animais de Doenças , Colite/induzido quimicamente
7.
Plant Cell ; 35(5): 1593-1616, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36695476

RESUMO

High salinity, an adverse environmental factor affecting about 20% of irrigated arable land worldwide, inhibits plant growth and development by causing oxidative stress, damaging cellular components, and disturbing global metabolism. However, whether and how reactive oxygen species disturb the metabolism of salt-stressed plants remain elusive. Here, we report that salt-induced hydrogen peroxide (H2O2) inhibits the activity of plastid triose phosphate isomerase (pdTPI) to promote methylglyoxal (MG) accumulation and stimulates the sulfenylation of pdTPI at cysteine 74. We also show that MG is a key factor limiting the plant growth, as a decrease in MG levels completely rescued the stunted growth and repressed salt stress tolerance of the pdtpi mutant. Furthermore, targeting CATALASE 2 into chloroplasts to prevent salt-induced overaccumulation of H2O2 conferred salt stress tolerance, revealing a role for chloroplastic H2O2 in salt-caused plant damage. In addition, we demonstrate that the H2O2-mediated accumulation of MG in turn induces H2O2 production, thus forming a regulatory loop that further inhibits the pdTPI activity in salt-stressed plants. Our findings, therefore, illustrate how salt stress induces MG production to inhibit the plant growth.


Assuntos
Peróxido de Hidrogênio , Aldeído Pirúvico , Peróxido de Hidrogênio/metabolismo , Aldeído Pirúvico/metabolismo , Estresse Salino , Estresse Oxidativo , Plantas/metabolismo , Cloroplastos/metabolismo , Estresse Fisiológico
8.
World J Gastrointest Oncol ; 15(1): 195-204, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36684049

RESUMO

BACKGROUND: Intestinal natural killer/T-cell lymphoma (NKTCL) is a rare and aggressive non-Hodgkin's lymphoma, and its occurrence is closely related to Epstein-Barr virus infection. In addition, the clinical symptoms of NKTCL are not obvious, and the specific pathogenesis is still uncertain. While NKTCL may occur in any segment of the intestinal tract, its distinct location in the periampullary region, which leads clinicians to consider mimics of a pancreatic head mass, should also be addressed. Therefore, there remain huge challenges in the diagnosis and treatment of intestinal NKTCL. CASE SUMMARY: In this case, we introduce a male who presented to the clinic with edema of both lower limbs, accompanied by diarrhea, and abdominal pain. Endoscopic ultrasound (EUS) showed well-defined homogeneous hypoechoic lesions with abundant blood flow signals and compression signs in the head of the pancreas. Under the guidance of EUS- fine needle biopsy (FNB) with 19 gauge or 22 gauge needles, combined with multicolor flow cytometry immunophenotyping (MFCI) helped us diagnose NKTCL. During treatments, the patient was prescribed the steroid (dexamethasone), methotrexate, ifosfamide, L-asparaginase, and etoposide chemotherapy regimen. Unfortunately, he died of leukopenia and severe septic shock in a local hospital. CONCLUSION: Clinicians should enhance their understanding of NKTCL. Some key factors, including EUS characteristics, the right choice of FNB needle, and combination with MFCI, are crucial for improving the diagnostic rate and reducing the misdiagnosis rate.

9.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36430903

RESUMO

Using phytogenic extracts for preventing or treating rumen epithelial inflammatory injury is a potential alternative to antibiotic use due to their residue-free characteristics. In this study, the efficacy of Morus root bark extract Morusin on ruminal epithelial cells (RECs) against pathogenic stimulus was investigated for the first time. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and quantitative real-time polymerase chain reaction (qPCR) results showed that the Morusin did not affect the cell viability of RECs and exerted anti-inflammatory effects in a concentration-dependent manner. Transcriptome analysis further revealed that the Morusin significantly downregulated the inflammatory-response-related cell signaling, while it upregulated the cell-proliferation-inhibition- and barrier-function-related processes in RECs upon lipopolysaccharide (LPS) stimulation. The epidermal growth factor receptor (EGFR) blocking and immunoblotting analysis further confirmed that the Morusin suppressed LPS-induced inflammation in RECs by downregulating the phosphorylation of protein kinase B (AKT) and nuclear factor-kappaB (NF-κB) p65 protein via inhibiting the EGFR signaling. These findings demonstrate the protective roles of Morusin in LPS-induced inflammation in RECs.


Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Animais , Lipopolissacarídeos/toxicidade , Transdução de Sinais , Células Epiteliais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Receptores ErbB
10.
Biomater Sci ; 10(20): 6013-6023, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36069330

RESUMO

Conventional photothermal therapy (PTT) often causes unwanted hyperthermia damage to the surrounding healthy tissues, and fails in the ablation of infiltrating and malignant tumors, which even leads to tumor recurrence. The main reasons for the suboptimal therapeutic efficacy of PTT include: (i) the heterogenous distribution of PTT agents in cancer cells, (ii) the limited penetration depth of irradiation light, and (iii) importantly, the difficulty in controlling the photothermal process which often leads to overheated hyperthermia and severe side effects, including inflammation, immune escape, metastasis and damage to normal tissues surrounding the tumor. It is envisioned that organelle targeted mild PTT would be a good strategy to overcome these shortcomings and significantly improve the therapeutic efficacy, decrease the therapeutic threshold for both the drug dosage and hyperthermia temperature, and diminish damage to the neighboring healthy tissues. Although small biocompatible organic photothermal agents are promising candidates for organelle targeted mild PTT, related research together with their therapeutic mechanism study has rarely been reported so far. In this contribution, we fabricate efficient small organic molecules (TD1) via donor-acceptor molecular engineering, and further package TD1 molecules into a lipid carrier to construct mitochondria-targeted nanoparticles (M-TD1 NPs) for mild PTT. The highly desirable photothermal performance of M-TD1 NPs dramatically improves the efficacy of photothermal cancer cell ablation. Benefiting from the excellent PTT effects of M-TD1 NPs, favorable antitumor efficacy and metastasis inhibition are achieved in vitro and in vivo. Mechanistically, the improved mitochondria-based mild thermal treatment triggers the apoptosis-dependent cell death and influences the autophagy of cancer cells, resulting in enhanced cancer elimination and suppressed cancer cell migration. This work demonstrates that sub-cellular targeted mild PTT is promising to control cell apoptosis and autophagy and has potential for future metastatic cancer therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Hipertermia Induzida/métodos , Lipídeos , Camundongos , Camundongos Nus , Mitocôndrias , Neoplasias/tratamento farmacológico , Fototerapia/métodos , Terapia Fototérmica
11.
Cancer Sci ; 113(11): 3751-3765, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35969372

RESUMO

Bone-related events caused by breast cancer bone metastasis substantially compromise the survival and quality of life of patients. Because triple-negative breast cancer (TNBC) lacks hormone receptors and Her2-targeted therapeutic options, progress in the treatment of TNBC bone metastasis has been very slow. Intercellular adhesion molecule 1 (ICAM1) is highly expressed in various cancers and plays an important role in tumorigenesis and metastasis. However, the effect and mechanism of ICAM1 in TNBC bone metastasis are still unknown. We found that ICAM1 was highly expressed in TNBC and correlated with prognosis in TNBC patients. Cell lines with high expression of ICAM1 exhibited enhanced bone metastasis in tumor-bearing mice, and silencing ICAM1 expression significantly inhibited bone metastasis in mice. ICAM1 interacted with integrins to activate the epithelial-to-mesenchymal transition program through TGF-ß/SMAD signaling, ultimately enhancing cell invasiveness. Therefore, the findings of the present study provide a strong rationale for the application of ICAM1-targeted therapy in TNBC patients with bone metastasis.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Integrinas/uso terapêutico , Molécula 1 de Adesão Intercelular , Qualidade de Vida , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta/metabolismo , Proliferação de Células , Movimento Celular , Metástase Neoplásica
12.
Reprod Toxicol ; 110: 161-171, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35487396

RESUMO

The compound 3-methylcholanthrene (3-MC) is an environmental pollutant belonging to the PAHs, which reportedly have the potential to disrupt the endocrine systems of animals. In the present study, 4-week-old male and female mice were given 3-MC through their diet at a dose of 0.5 mg/kg of chow for 6 weeks before pregnancy. The first filial (F1) generation offspring of exposed or unexposed parental mice were sacrificed at the age of 5 or 10 weeks (F1-5 W or F1-10 W), and the potential effects on the F0 and F1 offspring were evaluated. The results showed that the serum and testicular testosterone (T) levels and the genes involved in T synthesis in F0 males and male F1-5 W individuals born from female mice exposed to 3-MC were significantly decreased. In addition, histological analysis suggested that exposure to 3-MC significantly disrupted testicular morphology in F0 mice and in the offspring of female mice exposed to 3-MC. Further investigation revealed that genes involved in spermatogenesis, such as Phosphoglycerate kinase 2 (Pgk2), Glial cell derived neurotrophic factor (Gdnf), Myeloblastosis oncogene (Myb), DEAD box helicase 4 (Ddx4) and KIT proto-oncogene receptor tyrosine kinase (Kit), were suppressed in these mice. However, the adverse effects of parental 3-MC exposure on the adolescent mice were mitigated when they grew to adulthood, which was verified by studies on F1-10 W mice. Our results suggest that female exposure to 3-MC has the potential to disrupt the endocrine system and spermatogenesis in male offspring; nevertheless, the adverse effects might be mitigated with age.


Assuntos
Metilcolantreno , Efeitos Tardios da Exposição Pré-Natal , Adulto , Animais , Sistema Endócrino , Feminino , Humanos , Masculino , Metilcolantreno/farmacologia , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Espermatogênese , Testículo
13.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1459-1468, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34549778

RESUMO

The widespread use of chlorothalonil (CTL) has caused environmental residues and food contamination. Although the intestinal epithelial barrier (IEB) is directly involved in the metabolism and transportation of various exogenous compounds, there are few studies on the toxic effects of these compounds on the structure and function of IEB. The disassembly of tight junction (TJ) is a major cause of intestinal barrier dysfunction under exogenous compounds intake, but the precise mechanisms are not well understood. Here, we used Caco-2 cell monolayers as an in vitro model of human IEB to evaluate the toxicity of CTL exposure on the structure and function of IEB. Results showed that CTL exposure increased the paracellular permeability of the monolayers and downregulated mRNA levels of the TJ genes (ZO-1, OCLN, and CLDN1), polarity marker gene (SI), and anti-apoptosis gene (BCL-2) but upregulated the mRNA levels of apoptosis-related genes, including BAD, BAX, CASP3, and CASP8. Western blot analysis and immunofluorescence assay results showed the decreased levels and disrupted distribution of TJ protein network, including ZO-1 and CLDN1 in CTL-exposed IEB. In addition, the accumulation of intracellular reactive oxygen species, decreased mitochondrial membrane potential, and increased active CASP3 expression were observed in treated IEB. The result of TUNEL assay further confirmed the occurrence of cell apoptosis after CTL exposure. In addition, the phosphorylation of mitogen-activated protein kinases, including ERK, JNK and p38, was increased in CTL-exposed IEB. In summary, our results demonstrated that CTL exposure induced IEB dysfunction in Caco-2 cell monolayers by activating the mitogen-activated protein kinase pathway.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/genética , Fungicidas Industriais/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Nitrilas/toxicidade , Junções Íntimas/efeitos dos fármacos , Células CACO-2 , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Ocludina/genética , Ocludina/metabolismo , Permeabilidade/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Acta Biochim Biophys Sin (Shanghai) ; 53(9): 1154-1165, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34355237

RESUMO

Short-chain chlorinated paraffins (SCCPs) have been listed as a new class of persistent organic pollutants by the Stockholm Convention. SCCPs exhibit carcinogenic-, endocrine-, and metabolism-disrupting effects. However, the knowledge of the immunomodulatory effects of SCCPs and their underlying mechanisms, especially in specific immune cells, remains limited. In addition to SCCPs, C9-13-CPs have also been detected in humans. In this study, murine RAW264.7 macrophages were exposed to C9-13-CPs at environmentally relevant concentrations to investigate whether or how C9-13-CPs exhibit immunomodulatory effects. The results showed that the exposure of RAW264.7 cells to C9-13-CPs increased cell viability, as assayed by MTT analysis at 490 nm, and also promoted cell proliferation, as indicated by EdU uptake assay, which was measured at excitation and emission wavelengths of 488 and 512 nm, respectively. In addition, exposure to C9-13-CPs not only led to elevated ATP level and intracellular Ca2+ level but also caused AMPK signaling activation and NF-κB signaling inhibition. Moreover, molecular docking showed that the ß2-AR receptor could bind to C9-13-CPs. Taken together, these results suggest that the immune dysfunction of RAW264.7 cells caused by C9-13-CPs is closely related to the ß2-AR/AMPK/NF-κB signaling axis.


Assuntos
Hidrocarbonetos Clorados/imunologia , Hidrocarbonetos Clorados/toxicidade , Imunomodulação/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Parafina/análogos & derivados , Parafina/toxicidade , Adenilato Quinase/antagonistas & inibidores , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/genética , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Células RAW 264.7 , Receptores Adrenérgicos beta 2/metabolismo
15.
Chemosphere ; 282: 130952, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34082316

RESUMO

Bisphenol A (BPA) has been found to promote hepatotoxicity, reproductive toxicity, and developmental toxicity. However, the neurotoxicity and mechanism of BPA on cognitive function are still unclear. To that end, eight-week-old adult male and female C57BL/6J mice were exposed to 0.05, 0.5, 5, and 50 mg/kg BPA by dietary supplementation for 22 weeks. BPA exposure impaired learning and memory in male mice, associated with increased neuroinflammation and damaged blood-brain barrier. BPA exposure reduced the tight junctions in the colon, resulting in dysfunction of the gut barrier. The levels of neurotransmitters in the serum, hippocampus, and colon of male mice, including tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid, were all decreased by BPA, together with reduced expression of tryptophan and 5-HT metabolism-related genes. Cecal microbiota analysis revealed that the diversity and composition of the microbiota in male mice were markedly altered by BPA, leading to functional profile changes in the microbial community. These results suggest that the neurotoxicity of BPA in male mice may be partly regulated by the interactions of the microbiota-gut-brain axis. However, BPA has little effect on the cognitive function in female mice, which might be caused by the microbial differences and the role of estrogen receptors.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Compostos Benzidrílicos , Encéfalo , Cognição , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenóis , Serotonina
16.
Environ Pollut ; 269: 116075, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316494

RESUMO

Polystyrene nanoparticles (PS NPs), originated from breakdown of large plastic wastes, have already caused much concern for their environmental risks on health. This current study was aimed to reveal the toxicological mechanism of PS NPs on developing zebrafish and macrophage cells. To fulfill this purpose, 42 nm PS NPs were exposed to the early development stage of zebrafish for 5 days, the decreased heart rate and locomotor activity of zebrafish larvae were observed. The fluorescent PS NPs were used to precisely assess the accumulation of PS NPs in zebrafish larvae, and the results indicated that PS NPs not only accumulated in digestive system, but also infiltrated into the liver. More importantly, the transcriptomic analysis revealed that a total of 356 genes were differentially expressed and the KEGG class map showed significant differences in the MAPK pathway upon PS NPs treatment. Meanwhile, the induction of oxidative stress and inflammation were also observed in zebrafish larvae. Furthermore, PS NPs also induced oxidative damage and inflammatory response in RAW 264.7 cells, which activated p38 MAPK signal pathway and finally induced cell apoptosis. Our study provides a new understanding of MAPK signaling pathway involved in toxicity mechanism.


Assuntos
Nanopartículas , Poliestirenos , Animais , Apoptose , Macrófagos/metabolismo , Nanopartículas/toxicidade , Estresse Oxidativo , Poliestirenos/metabolismo , Peixe-Zebra/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
ACS Appl Bio Mater ; 4(4): 3015-3026, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014389

RESUMO

To ensure improved efficacy and minimized toxicity of therapeutic molecules, it is generally accepted that specifically delivering them to the subcellular site of their action will be attractive. Phototherapy has received considerable attention because of its noninvasiveness, high temporal-spatial resolution, and minimal drug resistance. As important functional organelles in cells, mitochondria and endoplasmic reticulum (ER) participate in fundamental cellular processes, which make them much more sensitive to reactive oxygen species (ROS) and hyperthermia. Thus, mitochondria- or ER-targeted phototherapy will be rational strategies for synergetic cancer therapy. In this review, we focus on the latest advances in molecules and nanomaterials currently used for mitochondria- and ER-targeted phototherapy.


Assuntos
Materiais Biocompatíveis/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Organelas/química , Fototerapia , Materiais Biocompatíveis/química , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hipertermia/tratamento farmacológico , Hipertermia/metabolismo , Teste de Materiais , Mitocôndrias/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo
18.
Acta Biochim Biophys Sin (Shanghai) ; 52(12): 1382-1393, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33167028

RESUMO

Dibutyl phthalate (DBP), a kind of typical environmental pollutant, is widely used as plasticizers, and its neurotoxicity and developmental toxicity have been found in recent years. However, whether oral DBP exposure will affect the homeostasis of gut microbiota and its adverse response in liver of mammalians remain unclear. In the present study, 10-week experimental cycles of vehicle or DBP (0.1 and 1 mg/kg) were given to 6-week-old C57BL/6J mice by oral gavage. Our results revealed that the body weight of mice was increased after exposure to both low and high doses of DBP. The serum levels of hepatic triglyceride and total cholesterol were significantly increased in response to both doses of DBP. In addition, some pivotal genes related to lipogenesis were also increased in liver at the mRNA level. Evaluation of gut microbiota by 16S rRNA sequencing technology showed that 0.1 mg/kg DBP exposure significantly affected gut microbiota at the phylum and genus levels. Moreover, DBP exposure decreased mucus secretion and caused inflammation in the gut, leading to the impairment of intestinal barrier function. Exposure to DBP inhibited the expression of peroxisome proliferator-activated receptor-γ and activated the expression of nuclear factor kappa B. In addition, DBP exposure increased the level of lipopolysaccharide in serum, and increased the expression of toll-like receptor 4 and the levels of inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha, in the liver. These results indicated that exposure to DBP disturbed the homeostasis of gut microbiota, induced hepatic lipid metabolism disorder, and caused liver inflammation in mice via the related gut-liver axis signaling pathways.


Assuntos
Dibutilftalato/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Aspartato Aminotransferases/sangue , Peso Corporal , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Inflamação/induzido quimicamente , Lipídeos/sangue , Lipopolissacarídeos/sangue , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Subunidade p50 de NF-kappa B/metabolismo , RNA Ribossômico 16S , Receptor 4 Toll-Like/metabolismo
19.
Gut Microbes ; 12(1): 1-19, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33151120

RESUMO

Obesity is associated with impaired intestinal barrier function and dysbiosis of the gut microbiota. Spermidine, a polyamine that acts as an autophagy inducer, has important benefits in patients with aging-associated diseases and metabolic dysfunction. However, the mechanism of spermidine on obesity remains unclear. Here, we show that spermidine intake is negatively correlated with obesity in both humans and mice. Spermidine supplementation causes a significant loss of weight and improves insulin resistance in diet-induced obese (DIO) mice. These effects are associated with the alleviation of metabolic endotoxemia and enhancement of intestinal barrier function, which might be mediated through autophagy pathway and TLR4-mediated microbial signaling transduction. Moreover, spermidine causes the significant alteration of microbiota composition and function. Microbiota depletion compromises function, while transplantation of spermidine-altered microbiota confers protection against obesity. These changes might partly be driven by an SCFA-producing bacterium, Lachnospiraceae NK4A136 group, which was decreased in obese subjects and subsequently increased by spermidine. Notably, the change of Lachnospiraceae NK4A136 group is significantly correlated with enhanced gut barrier function induced by spermidine. Our results indicate that spermidine supplementation may serve as a viable therapy for obesity.


Assuntos
Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Obesidade/tratamento farmacológico , Espermidina/farmacologia , Junções Íntimas/efeitos dos fármacos , Animais , Autofagia/fisiologia , Peso Corporal , Células CACO-2 , Linhagem Celular Tumoral , Clostridiales/metabolismo , Disbiose/microbiologia , Endotoxemia/tratamento farmacológico , Humanos , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , Transdução de Sinais , Junções Íntimas/microbiologia , Receptor 4 Toll-Like/metabolismo
20.
J Affect Disord ; 276: 476-486, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871679

RESUMO

BACKGROUND: Depressive disorder is rapidly advancing in the worldwide, and therapeutic strategy through "gut-brain" axis has been proved to be effective. Crocin, has been found to have antidepressant activity. However, there is no thorough research for the effects of crocin-I (a major active component of crocin) on depression and its underlying mechanism. METHODS: We investigated the antidepressant effect of six-week oral administration of crocin-I in a mice model of depression induced by four-week CRS. Based on the "microbiota-gut-brain" axis, we determined the effects of crocin-I administration on gut microbiota, intestinal barrier function, short chain fatty acids and neurochemical indicators. RESULTS: Administration of crocin-I at a dose of 40 mg/kg for six weeks mitigated depression-like behaviors of depressed mice as evidenced by behaviors tests. In addition, crocin-I reduced the levels of lipopolysaccharide (LPS), Interleukin-6and tumor necrosis factor-α (TNF-α) in serum and TNF-α expression in the hippocampus, and increased the hippocampal brain-derived neurotrophic factor. Besides, 16 s rRNA sequencing revealed that crocin-I mitigated the gut microbiota dysbiosis in depressed mice as represented by the decreased abundance of Proteobacteria and Bacteroidetes, Sutterella spp. and Ruminococcus spp. and increased abundances of Firmicutes, Lactobacillus spp. and Bacteroides spp. Moreover, gas chromatography-mass spectrometry revealed that crocin-I reversed the decreased levels of short-chain fatty acids (SCFAs) in feces of depressed mice. Furthermore, crocin-I improved the impaired intestinal barrier by increasing expression of Occludin and Claudin-1, which contributed to the decreased LPS leakage. LIMITATIONS: Only the male mice were used; the dose-effect relationship should be observed. CONCLUSION: These results suggested that crocin-I effectively alleviated depression-like behavior, likely depended on the gut microbiota and its modulation of intestinal barrier and SCFAs.


Assuntos
Microbioma Gastrointestinal , Animais , Encéfalo , Carotenoides , Depressão/tratamento farmacológico , Depressão/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA