Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nutrients ; 13(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071972

RESUMO

The biomedical potential of the edible red seaweed Agarophyton chilense (formerly Gracilaria chilensis) has not been explored. Red seaweeds are enriched in polyunsaturated fatty acids and eicosanoids, which are known natural ligands of the PPARγ nuclear receptor. PPARγ is the molecular target of thiazolidinediones (TZDs), drugs used as insulin sensitizers to treat type 2 diabetes mellitus. Medical use of TZDs is limited due to undesired side effects, a problem that has triggered the search for selective PPARγ modulators (SPPARMs) without the TZD side effects. We produced Agarophyton chilense oleoresin (Gracilex®), which induces PPARγ activation without inducing adipocyte differentiation, similar to SPPARMs. In a diet-induced obesity model of male mice, we showed that treatment with Gracilex® improves insulin sensitivity by normalizing altered glucose and insulin parameters. Gracilex® is enriched in palmitic acid, arachidonic acid, oleic acid, and lipophilic antioxidants such as tocopherols and ß-carotene. Accordingly, Gracilex® possesses antioxidant activity in vitro and increased antioxidant capacity in vivo in Caenorhabditis elegans. These findings support the idea that Gracilex® represents a good source of natural PPARγ ligands and antioxidants with the potential to mitigate metabolic disorders. Thus, its nutraceutical value in humans warrants further investigation.


Assuntos
Gracilaria/química , Resistência à Insulina/fisiologia , Obesidade/metabolismo , PPAR gama/metabolismo , Extratos Vegetais , Animais , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Caenorhabditis elegans , Modelos Animais de Doenças , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
Am J Med Genet C Semin Med Genet ; 184(4): 1009-1013, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33300677

RESUMO

We report the case of a 17-year-old girl with Tyrosinemia type 1a who carried a planned pregnancy to term while being under 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC, nitisinone) treatment and a tyrosine- and phenylalanine-restricted diet. She was on treatment since 2 months of age with poor metabolic control prior to her pregnancy (tyrosine 838 ± 106 umol/L). NTBC and a low tyrosine and phenylalanine diet were continued during her pregnancy. She unfortunately suffered from urinary tract infection and anemia during her pregnancy, with median plasma tyrosine and phenylalanine levels of 613 ± 106 umol/L (200-400 umol/L) and 40.2 ± 8 umol/L (35-90 umol/L), respectively. After 40 weeks of gestation, the patient gave birth to a healthy boy, with no adverse effects related to the use of NTBC. The newborn presented with a transitory elevation of plasma tyrosine levels and normal phenylalanine, methionine, and succinylacetone levels. By 12 months of age, the child was determined to have normal psychomotor development. At 20 months old, he was diagnosed with a mild developmental delay; however, global cognitive evaluation with the Wechsler Intelligence Scale for Children (WISC) test at 5 years old showed normal performance. Here, we discuss one of the few reported cases of nitisinone treatment during pregnancy and demonstrate a lack of teratogenicity and long-term cognitive disabilities.


Assuntos
Tirosinemias , Adolescente , Chile , Dieta , Feminino , Humanos , Fenilalanina , Tirosina , Tirosinemias/diagnóstico , Tirosinemias/tratamento farmacológico
3.
J Cell Biochem ; 117(10): 2370-6, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27416518

RESUMO

Bone marrow adipose tissue (BMAT) is associated with low bone mass, although the functional consequences for skeletal maintenance of increased BMAT are currently unclear. BMAT might have a role in systemic energy metabolism, and could be an energy source as well as an endocrine organ for neighboring bone cells, releasing cytokines, adipokines and free fatty acids into the bone marrow microenvironment. The aim of the present report was to compare the fatty acid composition in the bone marrow supernatant fluid (BMSF) and blood plasma of postmenopausal women women (65-80 years old). BMSF was obtained after spinning the aspirated bone marrow samples; donors were classified as control, osteopenic or osteoporotic after dual-energy X-ray absorptiometry. Total lipids from human bone marrow fluid and plasma were extracted, converted to the corresponding methyl esters, and finally analyzed by a gas chromatographer coupled with a mass spectrometer. Results showed that fatty acid composition in BMSF was dynamic and distinct from blood plasma, implying significance in the locally produced lipids. The fatty acid composition in the BMSF was enriched in saturated fatty acid and decreased in unsaturated fatty acids as compared to blood plasma, but this relationship switched in women who suffered a hip fracture. On the other hand, there was no relationship between BMSF and bone mineral density. In conclusion, lipid composition of BMSF is distinct from the circulatory compartment, most likely reflecting the energy needs of the marrow compartment. J. Cell. Biochem. 117: 2370-2376, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Biomarcadores/metabolismo , Medula Óssea/metabolismo , Ácidos Graxos/metabolismo , Fraturas do Quadril/diagnóstico , Osteoporose Pós-Menopausa/complicações , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Cromatografia Gasosa , Feminino , Fraturas do Quadril/etiologia , Fraturas do Quadril/metabolismo , Humanos , Pós-Menopausa
4.
Biol. Res ; 46(3): 289-294, 2013. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-692196

RESUMO

Phototransduction, the mechanism underlying the electrical response to light in photoreceptor cells, has been thoroughly investigated in Drosophila melanogaster, an essential model in signal transduction research. These cells present a highly specialized photosensitive membrane consisting of thousands of microvilli forming a prominent structure termed a rhabdomere. These microvilli encompass the phototransduction proteins, most of which are transmembrane and exclusively rhabdomeric. Rhabdomere membrane lipids play a crucial role in the activation of the transient receptor potential ionic channels (TRP and TRPL) responsible for initiating the photoresponse. Despite its importance, rhabdomere lipid composition has not been established. We developed a novel preparation enriched in rhabdomere membranes to perform a thorough characterization of the lipidomics of Drosophila rhabdomeres. Isolated eyes (500) were homogenized and subjected to a differential centrifugation protocol that generates a fraction enriched in rhabdomere membrane. Lipids extracted from this preparation were identified and quantified by gas chromatography coupled to mass spectrometry. We found an abundance of low sterol esters (C16:0, C18:0), highly abundant and diverse triglycerides, free fatty acids, a moderate variety of mono and diacyglycerols (C:16:0, 18:0, C18:1) and abundant phospholipids (principally C18:2). This preparation opens a new avenue for investigating essential aspects of phototransduction.


Assuntos
Animais , Proteínas de Drosophila/química , Drosophila melanogaster/química , Ácidos Graxos/análise , Microvilosidades/química , Células Fotorreceptoras de Invertebrados/química , Canais de Potencial de Receptor Transitório/química , Proteínas de Drosophila/análise , Transdução de Sinal Luminoso/fisiologia , Transporte Proteico/fisiologia , Canais de Potencial de Receptor Transitório/análise
5.
J Biol Chem ; 282(51): 37006-15, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17965419

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARgamma) has been proposed as a therapeutic target for neurodegenerative diseases because of its anti-inflammatory action in glial cells. However, PPARgamma agonists preventbeta-amyloid (Abeta)-induced neurodegeneration in hippocampal neurons, and PPARgamma is activated by the nerve growth factor (NGF) survival pathway, suggesting a neuroprotective anti-inflammatory independent action. Here we show that the PPARgamma agonist rosiglitazone (RGZ) protects hippocampal and dorsal root ganglion neurons against Abeta-induced mitochondrial damage and NGF deprivation-induced apoptosis, respectively, and promotes PC12 cell survival. In neurons and in PC12 cells RGZ protective effects are associated with increased expression of the Bcl-2 anti-apoptotic protein. NGF-differentiated PC12 neuronal cells constitutively overexpressing PPARgamma are resistant to Abeta-induced apoptosis and morphological changes and show functionally intact mitochondria and no increase in reactive oxygen species when challenged with up to 50 microM H2O2. Conversely, cells expressing a dominant negative mutant of PPARgamma show increased Abeta-induced apoptosis and disruption of neuronal-like morphology and are highly sensitive to oxidative stress-induced impairment of mitochondrial function. Cells overexpressing PPARgamma present a 4- to 5-fold increase in Bcl-2 protein content, whereas in dominant negative PPARgamma-expressing cells, Bcl-2 is barely detected. Bcl-2 knockdown by small interfering RNA in cells overexpressing PPARgamma results in increased sensitivity to Abeta and oxidative stress, further suggesting that Bcl-2 up-regulation mediates PPARgamma protective effects. PPARgamma prosurvival action is independent of the signal-regulated MAPK or the Akt prosurvival pathways. Altogether, these data suggest that PPARgamma supports survival in neurons in part through a mechanism involving increased expression of Bcl-2.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Gânglios Espinais/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , PPAR gama/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular , Gânglios Espinais/patologia , Hipocampo/patologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Hipoglicemiantes/farmacologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/patologia , Oxidantes/metabolismo , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Células PC12 , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Rosiglitazona , Tiazolidinedionas/farmacologia
6.
J Biol Chem ; 280(10): 9604-9, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15632188

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARgamma), a member of the nuclear receptor superfamily, is subject to considerable interest because of its role in adipocyte differentiation, metabolic control, and anti-inflammatory action. PPARgamma research in brain cells is presently focused on glial PPARgamma because of its potential as a pharmacological target in the treatment of neurodegenerative diseases with an inflammatory component. In neurons PPARgamma function is far from clear, and PPARgamma agonist-dependent and -independent effects on cell survival or differentiation have been reported. We used PC12 cells, widely used to study neuronal signaling, such as nerve growth factor (NGF)-induced differentiation and survival or epidermal growth factor-dependent cell proliferation to dissect the possible involvement of PPARgamma in these pathways. We show that NGF but not epidermal growth factor increases the transcriptional activity of PPARgamma, and modulates the expression of this transcription factor. Because NGF signals through the tyrosine kinase (TrkA) NGF receptor and/or the p75NTR receptor, we used rescue experiments with a PC12 cell mutant lacking TrkA to show that NGF-induced PPARgamma activation is dependent on TrkA activation. Our results point out PPARgamma as a novel target of the TrkA-mediated neuronal cell survival and differentiating pathway and suggest a potential new inflammatory-independent therapeutic approach for pharmacological intervention in neurological disorders.


Assuntos
Fatores de Crescimento Neural/farmacologia , PPAR gama/fisiologia , Transdução de Sinais/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Deleção de Genes , Células PC12 , PPAR gama/genética , Feocromocitoma , Ratos , Receptor trkA/deficiência , Receptor trkA/genética , Receptor trkA/fisiologia , Receptores de Fator de Crescimento Neural/fisiologia , Proteínas Recombinantes/metabolismo , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA