Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 40(2): 201-218.e9, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35090594

RESUMO

The balance of programmed death-1 (PD-1)-expressing CD8+ T cells and regulatory T (Treg) cells in the tumor microenvironment (TME) determines the clinical efficacy of PD-1 blockade therapy through the competition of their reactivation. However, factors that determine this balance remain unknown. Here, we show that Treg cells gain higher PD-1 expression than effector T cells in highly glycolytic tumors, including MYC-amplified tumors and liver tumors. Under low-glucose environments via glucose consumption by tumor cells, Treg cells actively absorbed lactic acid (LA) through monocarboxylate transporter 1 (MCT1), promoting NFAT1 translocation into the nucleus, thereby enhancing the expression of PD-1, whereas PD-1 expression by effector T cells was dampened. PD-1 blockade invigorated the PD-1-expressing Treg cells, resulting in treatment failure. We propose that LA in the highly glycolytic TME is an active checkpoint for the function of Treg cells in the TME via upregulation of PD-1 expression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Ácido Láctico/metabolismo , Receptor de Morte Celular Programada 1/genética , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/genética , Animais , Biomarcadores Tumorais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas de Checkpoint Imunológico/metabolismo , Imunofenotipagem , Ácido Láctico/farmacologia , Ativação Linfocitária , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Terapia de Alvo Molecular , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos
2.
Methods Mol Biol ; 2274: 261-270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34050478

RESUMO

Bioluminescence resonance energy transfer (BRET) is a commonly used assay system for studying protein-protein interactions. The present protocol introduces a conceptually unique ligand-activatable BRET system (termed BRET9), where a full-length artificial luciferase variant 23 (ALuc23), acting as the energy donor, is sandwiched in between a protein pair of interest, FRB and FKBP, and further linked to a fluorescent protein as the energy acceptor for studying protein-protein interaction. A specific ligand, rapamycin, which initiates intramolecular interactions of FRB and FKBP inside the probe, which develops molecular strain in the sandwiched ALuc23 to complete its folding, thus, the probe system greatly enhances both the overall bioluminescence (BL) spectrum and the BRET signal in the far-red (FR) region. This new BRET system provides a robust ligand-activatable platform that efficiently reports FR-BL signals in mammalian cells.


Assuntos
Neoplasias da Mama/patologia , Transferência Ressonante de Energia de Fluorescência/métodos , Luciferases/metabolismo , Medições Luminescentes/métodos , Imagem Óptica/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas de Ligação a Tacrolimo/metabolismo , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Humanos , Imunossupressores/farmacologia , Substâncias Luminescentes/química , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
3.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33602696

RESUMO

BACKGROUND: Different types of tumors have varying susceptibility to immunotherapy and hence require different treatment strategies; these cover a spectrum ranging from 'hot' tumors or those with high mutational burden and immune infiltrates that are more amenable to targeting to 'cold' tumors that are more difficult to treat due to the fewer targetable mutations and checkpoint markers. We hypothesized that an effective anti-tumor response requires multiple agents that would (1) engage the immune response and generate tumor-specific effector cells; (2) expand the number and breadth of the immune effector cells; (3) enable the anti-tumor activity of these immune cells in the tumor microenvironment; and (4) evolve the tumor response to widen immune effector repertoire. METHODS: A hexatherapy combination was designed and administered to MC38-CEA (warm) and 4T1 (cool) murine tumor models. The hexatherapy regimen was composed of adenovirus-based vaccine and IL-15 (interleukin-15) superagonist (N-803) to engage the immune response; anti-OX40 and anti-4-1BB to expand effector cells; anti-PD-L1 (anti-programmed death-ligand 1) to enable anti-tumor activity; and docetaxel to promote antigen spread. Primary and metastatic tumor growth inhibition were measured. The generation of anti-tumor immune effector cells was analyzed using flow cytometry, ELISpot (enzyme-linked immunospot), and RNA analysis. RESULTS: The MC38-CEA and 4T1 tumor models have differential sensitivities to the combination treatments. In the 'warm' MC38-CEA, combinations with two to five agents resulted in moderate therapeutic benefit while the hexatherapy regimen outperformed all these combinations. On the other hand, the hexatherapy regimen was required in order to decrease the primary and metastatic tumor burden in the 'cool' 4T1 model. In both models, the hexatherapy regimen promoted CD4+ and CD8+ T cell proliferation and activity. Furthermore, the hexatherapy regimen induced vaccine-specific T cells and stimulated antigen cascade. The hexatherapy regimen also limited the immunosuppressive T cell and myeloid derived suppressor cell populations, and also decreased the expression of exhaustion markers in T cells in the 4T1 model. CONCLUSION: The hexatherapy regimen is a strategic combination of immuno-oncology agents that can engage, expand, enable, and evolve the immune response and can provide therapeutic benefits in both MC38-CEA (warm) and 4T1 (cool) tumor models.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Docetaxel/administração & dosagem , Inibidores de Checkpoint Imunológico/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Vacinas de DNA/administração & dosagem , Animais , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Terapia Combinada , Docetaxel/farmacologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Interleucina-15/agonistas , Camundongos , Receptores OX40/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Vacinas de DNA/genética , Vacinas de DNA/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Immunol Res ; 9(2): 239-252, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33355290

RESUMO

Immunotherapy of immunologically cold solid tumors may require multiple agents to engage immune effector cells, expand effector populations and activities, and enable immune responses in the tumor microenvironment (TME). To target these distinct phenomena, we strategically chose five clinical-stage immuno-oncology agents, namely, (i) a tumor antigen-targeting adenovirus-based vaccine (Ad-CEA) and an IL15 superagonist (N-803) to activate tumor-specific T cells, (ii) OX40 and GITR agonists to expand and enhance the activated effector populations, and (iii) an IDO inhibitor (IDOi) to enable effector-cell activity in the TME. Flow cytometry, T-cell receptor (TCR) sequencing, and RNA-sequencing (RNA-seq) analyses showed that in the CEA-transgenic murine colon carcinoma (MC38-CEA) tumor model, Ad-CEA + N-803 combination therapy resulted in immune-mediated antitumor effects and promoted the expression of costimulatory molecules on immune subsets, OX40 and GITR, and the inhibitory molecule IDO. Treatment with Ad-CEA + N-803 + OX40 + GITR + IDOi, termed the pentatherapy regimen, resulted in the greatest inhibition of tumor growth and protection from tumor rechallenge without toxicity. Monotherapy with any of the agents had little to no antitumor activity, whereas combining two, three, or four agents had minimal antitumor effects. Immune analyses demonstrated that the pentatherapy combination induced CD4+ and CD8+ T-cell activity in the periphery and tumor, and antitumor activity associated with decreased regulatory T-cell (Treg) immunosuppression in the TME. The pentatherapy combination also inhibited tumor growth and metastatic formation in 4T1 and LL2-CEA murine tumor models. This study provides the rationale for the combination of multimodal immunotherapy agents to engage, enhance, and enable adaptive antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Neoplasias do Colo/terapia , Imunoterapia/métodos , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia
5.
Photochem Photobiol Sci ; 19(4): 524-529, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32159572

RESUMO

We demonstrate the potential of an eight-channel light sensing platform system, named Black Box I (BBI), for rapid and highly sensitive measurement of low-level light using a nonradioactive optical readout. We developed, normalized, and characterized the photon sensitivities of the eight channels of the BBI using placental alkaline phosphatase (PLAP) as a model imaging reporter. We found that the BBI system had a statistically strong linear correlation with the reference IVIS Lumina II system. When we applied normalization constants, we were able to optimize the photomultiplier tubes (PMT) of all eight channels of the BBI (up to r2 = 0.998). We investigated the biomedical utilities of BBI by: (i) determining alkaline phosphatase activities in mouse plasma samples as a diagnostic secretory biomarker of cancer, and (ii) diagnosing cancer metastases in the organs of mice bearing triple negative breast cancer. We provide an important new addition to low-cost biomedical instruments intended for pre-clinical diagnostic imaging with high sensitivity, high sample throughput, portability, and rapid on-site analysis of low-level light.


Assuntos
Fosfatase Alcalina/sangue , Biomarcadores Tumorais/sangue , Isoenzimas/sangue , Imagem Óptica , Fotometria , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/sangue , Proteínas Ligadas por GPI/metabolismo , Isoenzimas/metabolismo , Camundongos , Fotometria/instrumentação , Fótons , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/metabolismo
6.
Chem Commun (Camb) ; 56(2): 281-284, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31807738

RESUMO

Bioluminescence resonance energy transfer (BRET) is a commonly used assay system for studying protein-protein interactions and protein folding in vivo. Conventional BRET systems have solely depended on an overlap of the energy donor and acceptor spectra. In this study, we engineered a conceptually unique ligand-activatable BRET system (termed BRET9), where a full-length Artificial Luciferase variant 23 (ALuc23), acting as the energy donor, is sandwiched between a protein pair of interest, FRB and FKBP12, and linked to a fluorescent protein as the energy acceptor. A specific ligand, rapamycin, then activates inter- and intramolecular interactions of FRB and FKBP12, which develop molecular strain in the sandwiched ALuc23 to accelerate further folding. We found that this system greatly enhanced both the total bioluminescence spectrum and the BRET signal in the far-red (FR) region. We characterized the molecular construct by studying 18 different designs categorized into four groups. The best BRET system design allowed an approximately 5-fold enhancement of the bioluminescence intensities in the FR region. This new BRET system provides a robust ligand-activatable platform that efficiently reports FR bioluminescence signals in cells and living animal models.


Assuntos
Luciferases/química , Serina-Treonina Quinases TOR/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Linhagem Celular Tumoral , Humanos , Ligantes , Limite de Detecção , Luciferases/genética , Proteínas Luminescentes/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Ligação Proteica , Sirolimo/química , Sirolimo/metabolismo
7.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31536478

RESUMO

Meningiomas are the most common adult primary tumor of the central nervous system, but there are no known effective medical therapies for recurrent meningioma, particularly for World Health Organization grade II and III tumors. Meningiomas arise from the meninges, located outside the blood-brain barrier, and therefore may be directly targeted by antibody-mediated immunotherapy. We found that programmed cell death ligand 1 (PD-L1) was highly expressed in multiple human malignant meningioma cell lines and patient tumor samples. PD-L1 was targeted with the anti-PD-L1 antibody avelumab and directed natural killer cells to mediate antibody-dependent cellular cytotoxicity (ADCC) of PD-L1-expressing meningioma tumors both in vitro and in vivo. ADCC of meningioma cells was significantly increased in target cells that upregulated PD-L1 expression and, conversely, abrogated in tumor cells that were depleted of PD-L1. Additionally, the high-affinity natural killer cell line, haNK, outperformed healthy donor NK cells in meningioma ADCC. Together, these data support a clinical trial designed to target PD-L1 with avelumab and haNK cells, potentially offering a novel immunotherapeutic approach for patients with malignant meningioma.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Imunoterapia/métodos , Células Matadoras Naturais/transplante , Neoplasias Meníngeas/terapia , Meningioma/terapia , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias Meníngeas/imunologia , Meningioma/imunologia , Camundongos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
8.
ACS Comb Sci ; 21(6): 473-481, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31034200

RESUMO

Retinoic acid (RA) is a key metabolite necessary for embryonic development and differentiation in vertebrates. We demonstrate the utility of genetically encoded, ligand-activatable single-chain bioluminescence probes for detecting RAs from different biological sources. We examined 13 different molecular designs to identify an efficient single-chain probe that can quantify RA with significant sensitivity. The optimal probe consisted of four components: the N- and C-terminal fragments of artificial luciferase variant-16 (ALuc16), the ligand binding domain of retinoic acid receptor α (RARα LBD), and an LXXLL interaction motif. This probe showed a 5.2-fold greater bioluminescence intensity in response to RA when compared to the vehicle control in live mammalian cells. The probe was highly selective to all-trans-RA (at-RA), and highly sensitive in determining at-RA levels in cells derived from tumor xenografts created using MDA-MB-231 cells engineered to stably express the probe. We also detected RA levels in serum and cerebrospinal fluid. Using this probe, the detection limit for at-RA was ∼10-9.5 M, with a linear range of two orders. We present a highly useful technique to quantitatively image endogenous at-RA levels in live mammalian cells expressing novel single-chain bioluminescence probes.


Assuntos
Corantes Fluorescentes/química , Tretinoína/análise , Animais , Sítios de Ligação , Linhagem Celular , Feminino , Humanos , Ligantes , Camundongos Endogâmicos BALB C , Imagem Óptica , Receptor alfa de Ácido Retinoico/química , Receptor alfa de Ácido Retinoico/metabolismo , Imagem Individual de Molécula , Tretinoína/metabolismo
9.
Cancer Immunol Immunother ; 67(4): 675-689, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29392336

RESUMO

Natural killer (NK) cells are innate cytotoxic lymphocytes that play a fundamental role in the immunosurveillance of cancers. NK cells of cancer patients exhibit impaired function mediated by immunosuppressive factors released from the tumor microenvironment (TME), such as transforming growth factor (TGF)-ß1. An interleukin (IL)-15 superagonist/IL-15 receptor α fusion complex (IL-15SA/IL-15RA; ALT-803) activates the IL-15 receptor on CD8 T cells and NK cells, and has shown significant anti-tumor activity in several in vivo studies. This in vitro study investigated the efficacy of IL-15SA/IL-15RA on TGF-ß1-induced suppression of NK cell-cytotoxic function. IL-15SA/IL-15RA inhibited TGF-ß1 from decreasing NK cell lysis of four of four tumor cell lines (H460, LNCap, MCF7, MDA-MB-231). IL-15SA/IL-15RA rescued healthy donor and cancer patient NK cell-cytotoxicity, which had previously been suppressed by culture with TGF-ß1. TGF-ß1 downregulated expression of NK cell-activating markers and cytotoxic granules, such as CD226, NKG2D, NKp30, granzyme B, and perforin. Smad2/3 signaling was responsible for this TGF-ß1-induced downregulation of NK cell-activating markers and cytotoxic granules. IL-15SA/IL-15RA blocked Smad2/3-induced transcription, resulting in the rescue of NK cell-cytotoxic function from TGF-ß1-induced suppression. These findings suggest that in addition to increasing NK cell function via promoting the IL-15 signaling pathway, IL-15SA/IL-15RA can function as an inhibitor of TGF-ß1 signaling, providing a potential remedy for NK cell dysfunction in the immunosuppressive tumor microenvironment.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Citotoxicidade Imunológica/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Receptores de Interleucina-15/imunologia , Proteínas Recombinantes de Fusão/imunologia , Fator de Crescimento Transformador beta1/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Humanos , Terapia de Imunossupressão , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária , Neoplasias/terapia , Células Tumorais Cultivadas
10.
J Neurosurg ; 128(5): 1419-1427, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28753113

RESUMO

OBJECTIVE Chordoma is a rare bone tumor derived from the notochord and is resistant to conventional therapies such as chemotherapy, radiotherapy, and targeting therapeutics. Expression of epidermal growth factor receptor (EGFR) in a large proportion of chordoma specimens indicates a potential target for therapeutic intervention. In this study the authors investigated the potential role of the anti-EGFR antibody cetuximab in immunotherapy for chordoma. METHODS Since cetuximab is a monoclonal antibody of the IgG1 isotype, it has the potential to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) employing natural killer (NK) cells as effectors. Polymorphisms in the CD16 allele expressed on NK cells have been shown to influence the degree of ADCC of tumor cells, with the high-affinity valine (V)/V allele being responsible for more lysis than the V/phenylalanine (F) or FF allele. Unfortunately, however, only approximately 10% of the population expresses the VV allele on NK cells. An NK cell line, NK-92, has now been engineered to endogenously express IL-2 and the high-affinity CD16 allele. These irradiated high-affinity (ha)NK cells were analyzed for lysis of chordoma cells with and without cetuximab, and the levels of lysis observed in ADCC were compared with those of NK cells from donors expressing the VV, VF, and FF alleles. RESULTS Here the authors demonstrate for the first time 1) that cetuximab in combination with NK cells can mediate ADCC of chordoma cells; 2) the influence of the NK CD16 polymorphism in cetuximab-mediated ADCC for chordoma cell lysis; 3) that engineered haNK cells-that is, cells transduced to express the CD16 V158 FcγRIIIa receptor-bind cetuximab with similar affinity to normal NK cells expressing the high-affinity VV allele; and 4) that irradiated haNK cells induce ADCC with cetuximab in chordoma cells. CONCLUSIONS These studies provide rationale for the use of cetuximab in combination with irradiated haNK cells for therapy for chordoma.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Cetuximab/uso terapêutico , Cordoma/terapia , Imunoterapia , Células Matadoras Naturais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Linhagem Celular Tumoral , Sobrevivência Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Cordoma/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Humanos , Imunoterapia/métodos , Receptores de IgG/genética , Receptores de IgG/imunologia
11.
J Steroid Biochem Mol Biol ; 167: 115-125, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27888136

RESUMO

Approximately 70% of breast cancers express estrogen receptor α (ERα), which plays critical roles in breast cancer development. Fulvestrant has been effectively used to treat ERα-positive breast cancer, although resistance remains a critical problem. To elucidate the mechanism of resistance to fulvestrant, we established fulvestrant-resistant cell-lines named MFR (MCF-7 derived fulvestrant resistance) and TFR (T-47D derived fulvestrant resistance) from the ERα-positive luminal breast cancer cell lines MCF-7 and T-47D, respectively. Both fulvestrant-resistant cell lines lost sensitivity to estrogen and anti-estrogens. We observed diminished ERα expression at both the protein and mRNA levels. To address the mechanism of gene expression regulation, we examined epigenetic alteration, especially the DNA methylation level of ERα gene promoters. MFR cells displayed high methylation levels upstream of the ERα gene, whereas no change in DNA methylation was observed in TFR cells. Hence, we examined the gene expression plasticity of ERα, as there are differences in its reversibility following fulvestrant withdrawal. ERα gene expression was not restored in MFR cells, and alternative intracellular phosphorylation signals were activated. By contrast, TFR cells exhibited plasticity of ERα gene expression and ERα-dependent growth; moreover, these cells were resensitized to estrogen and anti-estrogens. The difference in epigenetic regulation among individual cells might explain the difference in the plasticity of ERα expression. We also identified an MFR cell-activating HER/Src-Akt/MAPK pathway; thus, the specific inhibitors effectively blocked MFR cell growth. This finding implies the presence of multiple fulvestrant resistance mechanisms and suggests that the optimal therapies differ among individual tumors as a result of differing epigenetic mechanisms regulating ERα gene expression.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética/efeitos dos fármacos , Estradiol/análogos & derivados , Receptor alfa de Estrogênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Fulvestranto , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Regiões Promotoras Genéticas , Transdução de Sinais
12.
Oncotarget ; 7(52): 86359-86373, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27861156

RESUMO

Natural killer (NK) cells are known to play a role in mediating innate immunity, in enhancing adaptive immune responses, and have been implicated in mediating anti-tumor responses via antibody-dependent cell-mediated cytotoxicity (ADCC) by reactivity of CD16 with the Fc region of human IgG1 antibodies. The NK-92 cell line, derived from a lymphoma patient, has previously been well characterized and adoptive transfer of irradiated NK-92 cells has demonstrated safety and shown preliminary evidence of clinical benefit in cancer patients. The NK-92 cell line, devoid of CD16, has now been engineered to express the high affinity (ha) CD16 V158 FcγRIIIa receptor, as well as engineered to express IL-2; IL-2 has been shown to replenish the granular stock of NK cells, leading to enhanced perforin- and granzyme-mediated lysis of tumor cells. The studies reported here show high levels of granzyme in haNK cells, and demonstrate the effects of irradiation of haNK cells on multiple phenotypic markers, viability, IL-2 production, and lysis of a spectrum of human tumor cells. Studies also compare endogenous irradiated haNK lysis of tumor cells with that of irradiated haNK-mediated ADCC using cetuximab, trastuzumab and pertuzumab monoclonal antibodies. These studies thus provide the rationale for the potential use of irradiated haNK cells in adoptive transfer studies for a range of human tumor types. Moreover, since only approximately 10% of humans are homozygous for the high affinity V CD16 allele, these studies also provide the rationale for the use of irradiated haNK cells in combination with IgG1 anti-tumor monoclonal antibodies.


Assuntos
Transferência Adotiva , Granzimas/imunologia , Células Matadoras Naturais/imunologia , Receptores de IgG/genética , Animais , Citotoxicidade Celular Dependente de Anticorpos , Antígeno B7-H1/análise , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Engenharia Genética , Humanos , Imunoglobulina G/uso terapêutico , Interleucina-2/genética , Células Matadoras Naturais/enzimologia , Células Matadoras Naturais/efeitos da radiação , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores de IgG/imunologia
13.
Oncotarget ; 7(23): 33498-511, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27172898

RESUMO

Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.


Assuntos
Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos/farmacologia , Cordoma/imunologia , Anticorpos Monoclonais Humanizados , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Ativação Linfocitária/efeitos dos fármacos
14.
MethodsX ; 3: 261-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27222821

RESUMO

A unique bioluminescent imaging probe is introduced for illuminating molecular tension appended by protein-protein interactions (PPIs) of interest. A full-length luciferase is sandwiched between two proteins of interest via minimal flexible linkers. The ligand-activated PPIs append intramolecular tension to the sandwiched luciferase, boosting or dropping the enzymatic activity in a quantitative manner. This method guides construction of a new lineage of bioassays for determining molecular tension appended by ligand-activated PPIs. The summary of the method is: •Molecular tension appended by protein-protein interactions (PPI) is visualized with a luciferase.•Estrogen activities are quantitatively illuminated with the molecular tension probes.•Full-length Renilla luciferase enhances the optical intensities after bending by PPI.

15.
J Steroid Biochem Mol Biol ; 144 Pt B: 513-22, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25178713

RESUMO

Aromatase inhibitors (AI) are commonly used to treat postmenopausal estrogen-receptor (ER)-positive breast carcinoma. However, resistance to AI is sometimes acquired, and the molecular mechanisms underlying such resistance are largely unclear. Recent studies suggest that AI treatment increases androgen activity during estrogen deprivation in breast carcinoma, but the role of the androgen receptor (AR) in breast carcinoma is still a matter of controversy. The purpose of this study is to examine the potential correlation between the AR- and AI-resistant breast carcinoma. To this end, we performed immunohistochemical analysis of 21 pairs of primary breast carcinoma and corresponding AI-resistant recurrent tissue samples and established two stable variant cell lines from ER-positive T-47D breast carcinoma cell line as AI-resistance models and used them in in vitro experiments. Immunohistochemical analysis demonstrated that the expression of prostate-specific antigen (PSA) and Ki-67 were significantly higher and ER and progesterone receptor (PR) were lower in recurrent lesions compared to the corresponding primary lesions. Variant cell lines overexpressed AR and PSA and exhibited neither growth response to estrogen nor expression of ER. Androgen markedly induced the proliferation of these cell lines. In addition, the expression profile of androgen-induced genes was markedly different between variant and parental cell lines as determined by microarray analysis. These results suggest that in some cases of ER-positive breast carcinoma, tumor cells possibly change from ER-dependent to AR-dependent, rendering them resistant to AI. AR inhibitors may thus be effective in a selected group of patients.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptores Androgênicos/metabolismo , Idoso , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Humanos , Calicreínas/metabolismo , Antígeno Ki-67/metabolismo , Pessoa de Meia-Idade , Antígeno Prostático Específico/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA