Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cancer Res ; 84(17): 2792-2805, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39228255

RESUMO

Neoantigen-based immunotherapy is an attractive potential treatment for previously intractable tumors. To effectively broaden the application of this approach, stringent biomarkers are crucial to identify responsive patients. ARID1A, a frequently mutated subunit of SWI/SNF chromatin remodeling complex, has been reported to determine tumor immunogenicity in some cohorts; however, mutations and deletions of ARID1A are not always linked to clinical responses to immunotherapy. In this study, we investigated immunotherapeutic responses based on ARID1A status in targeted therapy-resistant cancers. Mouse and human BRAFV600E melanomas with or without ARID1A expression were transformed into resistant to vemurafenib, an FDA-approved specific BRAFV600E inhibitor. Anti-PD-1 antibody treatment enhanced antitumor immune responses in vemurafenib-resistant ARID1A-deficient tumors but not in ARID1A-intact tumors or vemurafenib-sensitive ARID1A-deficient tumors. Neoantigens derived from accumulated somatic mutations during vemurafenib resistance were highly expressed in ARID1A-deficient tumors and promoted tumor immunogenicity. Furthermore, the newly generated neoantigens could be utilized as immunotherapeutic targets by vaccines. Finally, targeted therapy resistance-specific neoantigen in experimental human melanoma cells lacking ARID1A were validated to elicit T-cell receptor responses. Collectively, the classification of ARID1A-mutated tumors based on vemurafenib resistance as an additional indicator of immunotherapy response will enable a more accurate prediction to guide cancer treatment. Furthermore, the neoantigens that emerge with therapy resistance can be promising therapeutic targets for refractory tumors. Significance: Chemotherapy resistance promotes the acquisition of immunogenic neoantigens in ARID1A-deficient tumors that confer sensitivity to immune checkpoint blockade and can be utilized for developing antitumor vaccines, providing strategies to improve immunotherapy efficacy.


Assuntos
Antígenos de Neoplasias , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos , Melanoma , Fatores de Transcrição , Vemurafenib , Animais , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Melanoma/imunologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/terapia , Imunoterapia/métodos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/imunologia , Linhagem Celular Tumoral , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Mutação , Terapia de Alvo Molecular/métodos , Camundongos Endogâmicos C57BL
2.
Crit Rev Oncog ; 29(1): 45-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421713

RESUMO

With the advent of new therapies, immunotherapy has gained attention as a critical modality. After the discovery of the natural killer T (NKT) cells ligand, ex vivo cultured dendritic cells (DCs) loaded with NKT ligand (especially α-galactosylceramide (α-GalCer) (DC/Gal) or ex vivo expanded NKT transfer studies were clinically examined in several institutes. To prevent tumoral immune escape, the link between innate and adaptive immunity, in situ selective targeting of DCs has been attempted; however, protocol optimization was required. As a type of DC targeting therapy that combines the benefits of invariant natural killer T (iNKT) cells, we established an all-in-one, off-the-shelf drug, named the artificial adjuvant vector cell (aAVC), which consists of the tumor antigen and the CD1d-iNKT ligand complex. Here, to our knowledge, we first demonstrate the DC/GalCer therapy and NKT transfer therapy. Next, we introduce and discuss the use of aAVC therapy not only for efficient innate and adaptive immunity induction using fully matured DC in situ but also the characterization necessary for locally reprogramming the tumor microenvironment and systemically inducing long-term memory in T cells. We also discuss how the immune network mechanism is controlled by DCs. Next, we performed the first human clinical trial using WT1 antigen-expressing aAVC against relapse and refractory acute myelogenous leukemia. Thus, we highlight the challenges of using aAVCs as prodrugs for actively energizing DCs in vivo, underpinning immunological networks, and developing strategies for providing maximal benefits for patients.


Assuntos
Imunoterapia , Leucemia , Humanos , Ligantes , Terapia Combinada , Células Dendríticas , Microambiente Tumoral
3.
Front Immunol ; 15: 1345037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361934

RESUMO

Introduction: Cancer is categorized into two types based on the microenvironment: cold and hot tumors. The former is challenging to stimulate through immunity. The immunogenicity of cancer relies on the quality and quantity of cancer antigens, whether recognized by T cells or not. Successful cancer immunotherapy hinges on the cancer cell type, antigenicity and subsequent immune reactions. The T cell response is particularly crucial for secondary epitope spreading, although the factors affecting these mechanisms remain unknown. Prostate cancer often becomes resistant to standard therapy despite identifying several antigens, placing it among immunologically cold tumors. We aim to leverage prostate cancer antigens to investigate the potential induction of epitope spreading in cold tumors. This study specifically focuses on identifying factors involved in secondary epitope spreading based on artificial adjuvant vector cell (aAVC) therapy, a method established as invariant natural killer T (iNKT) -licensed DC therapy. Methods: We concentrated on three prostate cancer antigens (prostate-specific membrane antigen (PSMA), prostate-specific antigen (PSA), and prostatic acid phosphatase (PAP)). By introducing allogeneic cells with the antigen and murine CD1d mRNA, followed by α-galactosylceramide (α-GalCer) loading, we generated five types of aAVCs, i.e, monovalent, divalent and trivalent antigen-expressing aAVCs and four types of prostate antigen-expressing cold tumors. We evaluated iNKT activation and antigen-specific CD8+ T cell responses against tumor cells prompted by the aAVCs. Results: Our study revealed that monovalent aAVCs, expressing a single prostate antigen, primed T cells for primary tumor antigens and also induced T cells targeting additional tumor antigens by triggering a tumor antigen-spreading response. When we investigated the immune response by trivalent aAVC (aAVC-PROS), aAVC-PROS therapy elicited multiple antigen-specific CD8+ T cells simultaneously. These CD8+ T cells exhibited both preventive and therapeutic effects against tumor progression. Conclusions: The findings from this study highlight the promising role of tumor antigen-expressing aAVCs, in inducing efficient epitope spreading and generating robust immune responses against cancer. Our results also propose that multivalent antigen-expressing aAVCs present a promising therapeutic option and could be a more comprehensive therapy for treating cold tumors like prostate cancer.


Assuntos
Neoplasias da Próstata , Vacinas , Masculino , Camundongos , Humanos , Animais , Epitopos/metabolismo , Células Dendríticas , Antígenos de Neoplasias , Vacinas/metabolismo
4.
J Immunother Cancer ; 11(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37400134

RESUMO

BACKGROUND: A key to success of cancer immunotherapy is the amplification and sustenance of various effector cells. The hallmark of prominent antitumor T cells is their long-term effector function. Although interleukin (IL)-2 is an attractive cytokine, several attempts have been made towards developing IL-2 modalities with improved effectiveness and safety that enhance natural killer (NK) cells or T cells in cancer models. However, whether such IL-2 modalities can simultaneously support long-term innate and adaptive immunity, particularly stem-like memory, has not been shown. To resolve this issue, we compared the antitumor cellular mechanism with two IL-2/anti-IL-2 complexes (IL-2Cxs) administered in combination with a therapeutic cancer vaccine, which we had previously established as an in vivo dendritic cell-targeting therapy. METHODS: Two types of IL-2Cxs, CD25-biased IL-2Cx and CD122-biased IL-2Cx, together with a Wilms' tumor 1-expressing vaccine, were evaluated in a leukemic model. The immunological response and synergistic antitumor efficacy of these IL-2Cxs were then evaluated. RESULTS: When CD25-biased or CD122-biased IL-2Cxs in combination with the vaccine were assessed in an advanced-leukemia model, the CD122-biased IL-2Cx combination showed 100% survival, but the CD25-biased IL-2Cx did not. We first showed that invariant natural killer T (NKT) 1 cells are predominantly activated by CD122-biased IL-2Cx. In addition, in-depth analysis of immune responses by CD122-biased IL-2Cx in lymphoid tissues and the tumor microenvironment revealed a dramatic increase in the distinct subsets of NK and CD8+ T cells with stem-like phenotype (CD27+Sca-1hi, CXCR3hi, CD127+TCF-1+T-bet+ Eomes+). Moreover, CD122-biased IL-2Cx combination therapy maintained long-term memory CD8+ T cells capable of potent antitumor protection. After the high dimensional profiling analysis of NK and CD8+T cells, principal component analysis revealed that the stem-like-NK cell and stem-like-CD8+T cell state in the combination were integrated in the same group. CONCLUSIONS: CD122-biased IL-2Cx combined with the vaccine can induce a series of reactions in the immune cascade, including activation of not only NKT1 cells, but also NK and CD8+ T cells with a stem-like memory phenotype. Since it can also lead to a long-term, strong antitumor response, the combination of CD122-biased IL-2Cx with a vaccine may serve as a potential and competent strategy for patients with advanced cancer.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Neoplasias/terapia , Citocinas , Células Matadoras Naturais , Microambiente Tumoral
5.
Mol Ther Methods Clin Dev ; 29: 541-555, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37359417

RESUMO

Multiple myeloma (MM) remains an incurable hematological neoplasm. Neoantigen-specific T cell receptor (TCR)-engineered T (TCR-T) cell therapy is a potential alternative treatment. Particularly, TCRs derived from a third-party donor may cover broad ranges of neoantigens, whereas TCRs in patients suffering from immune disorders are limited. However, the efficacy and feasibility of treating MM have not been evaluated thoroughly. In this study, we established a system for identifying immunogenic mutant antigens on MM cells and their corresponding TCRs using healthy donor-derived peripheral blood mononuclear cells (PBMCs). Initially, the immune responses to 35 candidate peptides predicted by the immunogenomic analysis were investigated. Peptide-reactive T lymphocytes were enriched, and subsequently, TCR repertoires were determined by single-cell TCR sequencing. Eleven reconstituted TCRs showed mutation-specific responses against 4 peptides. Particularly, we verified the HLA-A∗24:02-binding QYSPVQATF peptide derived from COASY S55Y as the naturally processed epitope across MM cells, making it a promising immune target. Corresponding TCRs specifically recognized COASY S55Y+HLA-A∗24:02+ MM cells and augmented tumoricidal activity. Finally, adoptive cell transfer of TCR-T cells showed objective responses in the xenograft model. We initiatively proposed the utility of tumor mutated antigen-specific TCR genes to suppress MM. Our unique strategy will facilitate further identification of neoantigen-specific TCRs.

6.
Biomolecules ; 13(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36830717

RESUMO

Both natural killer T (NKT) and natural killer (NK) cells are innate cytotoxic lymphoid cells that produce inflammatory cytokines and chemokines, and their role in the innate immune response to tumors and microorganisms has been investigated. Especially, emerging evidence has revealed their status and function in the tumor microenvironment (TME) of tumor cells. Some bacteria producing NKT cell ligands have been identified to exert antitumor effects, even in the TME. By contrast, tumor-derived lipids or metabolites may reportedly suppress NKT and NK cells in situ. Since NKT and NK cells recognize stress-inducible molecules or inhibitory molecules on cancer cells, their status or function depends on the balance between inhibitory and activating receptor signals. As a recent strategy in cancer immunotherapy, the mobilization or restoration of endogenous NKT or NK cells by novel vaccines or therapies has become a focus of research. As a new biological evidence, after activation, effector memory-type NKT cells lasted in tumor-bearing models, and NK cell-based immune checkpoint inhibition potentiated the enhancement of NK cell cytotoxicity against cancer cells in preclinical and clinical trials. Furthermore, several new modalities based on the characteristics of NKT and NK cells, including artificial adjuvant vector cells, chimeric antigen receptor-expressing NK or NKT cell therapy, or their combination with immune checkpoint blockade have been developed. This review examines challenges and future directions for improving these therapies.


Assuntos
Células T Matadoras Naturais , Neoplasias , Humanos , Células Matadoras Naturais , Neoplasias/metabolismo , Imunoterapia , Citocinas/metabolismo , Microambiente Tumoral
7.
Immunohorizons ; 7(1): 1-16, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637516

RESUMO

NK cells are major effector cells involved in the elimination of early tumors and prevent metastasis. They often have an impaired function in patients with cancer. Preclinical studies have demonstrated NK cell activation as the adjunctive effect of invariant NKT (iNKT) cells. Activation of iNKT cells after administration of the glycolipid ligand α-galactosylceramide, loaded with CD1d-expressing human PBMC-derived APCs (APC/Gal), is an attractive cancer therapy to optimize the use of NK cells. However, the subsets of NK cells that are activated following iNKT cell activation as well as the period of NK cell activation remain unclear. In this study, we report that the granzyme B-expressing NK cell response in postoperative lung cancer patients was enhanced 49 d after administration of APC/Gal in a phase II study. We found maximum IFN-γ production on day 49 in 13 out of 27 APC/Gal-treated patients. On day 49, 14 out of 27 patients (51.9%) had higher IFN-γ production by iNKT cells (>6-fold higher than the baseline level). This increment significantly correlated with granzyme B-expressing NK cells. Although IFN-γ production was lower in patients in the nontreated group, we detected maximum IFN-γ production 12 mo after the resection of lung cancer (9 out of 29 patients [31%]). These findings suggest that elimination of cancer cells leads to increased NK cell function, which can be further enhanced by APC/Gal therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células T Matadoras Naturais , Humanos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Granzimas , Ligantes , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/secundário , Células Matadoras Naturais
8.
Cancer Sci ; 113(8): 2536-2547, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35598170

RESUMO

The efficacy of current coronavirus disease 2019 (COVID-19) vaccines has been demonstrated; however, emerging evidence suggests insufficient protection in certain immunocompromised cancer patients. We previously developed a cell-based anti-cancer vaccine platform involving artificial adjuvant vector cells (aAVCs) capable of inducing a strong adaptive response by enhancing the innate immunity. aAVCs are target antigen-transfected allogenic cells that simultaneously express the natural killer T-cell ligand-CD1d complex on their surface. In the present study, we applied this system for targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (CoV-2-S) using CoV-2-S-expressing aAVCs (aAVC-CoV-2) and evaluated the immune response in a murine model. A single dose of aAVC-CoV-2 induced a large amount of CoV-2-S-specific, multifunctional CTLs in addition to CD4+ T-cell-dependent anti-CoV-2-S-specific Abs. CoV-2-S-specific CTLs infiltrated the lung parenchyma and persisted as long-term memory T cells. Furthermore, we immunized mice with CoV-2-S- and tumor-associated antigen (TAA)-co-expressing aAVCs (aAVC-TAA/CoV-2) and evaluated whether the anti-SARS-CoV-2 and antitumor CTLs were elicited. We found that the aAVC-TAA/CoV-2-S therapy exerted apparent antitumor effects and induced CoV-2-S-specific CTLs. These findings suggest aAVC-TAA/CoV-2-S therapy as a promising vaccine candidate for preventing COVID-19, as well as enhancing the effectiveness of cancer therapies.


Assuntos
COVID-19 , Neoplasias , Vacinas Virais , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Imunização , Camundongos , SARS-CoV-2 , Vacinação
9.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269735

RESUMO

The clinical benefits of immune checkpoint blockage (ICB) therapy have been widely reported. In patients with cancer, researchers have demonstrated the clinical potential of antitumor cytotoxic T cells that can be reinvigorated or enhanced by ICB. Compared to self-antigens, neoantigens derived from tumor somatic mutations are believed to be ideal immune targets in tumors. Candidate tumor neoantigens can be identified through immunogenomic or immunopeptidomic approaches. Identification of neoantigens has revealed several points of the clinical relevance. For instance, tumor mutation burden (TMB) may be an indicator of immunotherapy. In various cancers, mutation rates accompanying neoantigen loads may be indicative of immunotherapy. Furthermore, mismatch repair-deficient tumors can be eradicated by T cells in ICB treatment. Hence, immunotherapies using vaccines or adoptive T-cell transfer targeting neoantigens are potential innovative strategies. However, significant efforts are required to identify the optimal epitopes. In this review, we summarize the recent progress in the identification of neoantigens and discussed preclinical and clinical studies based on neoantigens. We also discuss the issues remaining to be addressed before clinical applications of these new therapeutic strategies can be materialized.


Assuntos
Vacinas Anticâncer , Neoplasias , Antígenos de Neoplasias , Biomarcadores Tumorais , Vacinas Anticâncer/uso terapêutico , Epitopos , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/terapia
10.
Cancer Sci ; 113(3): 864-874, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34971473

RESUMO

NY-ESO-1 is a cancer/testis antigen expressed in various cancer types. However, the induction of NY-ESO-1-specific CTLs through vaccines is somewhat difficult. Thus, we developed a new type of artificial adjuvant vector cell (aAVC-NY-ESO-1) expressing a CD1d-NKT cell ligand complex and a tumor-associated antigen, NY-ESO-1. First, we determined the activation of invariant natural killer T (iNKT) and natural killer (NK) cell responses by aAVC-NY-ESO-1. We then showed that the NY-ESO-1-specific CTL response was successfully elicited through aAVC-NY-ESO-1 therapy. After injection of aAVC-NY-ESO-1, we found that dendritic cells (DCs) in situ expressed high levels of costimulatory molecules and produced interleukn-12 (IL-12), indicating that DCs undergo maturation in vivo. Furthermore, the NY-ESO-1 antigen from aAVC-NY-ESO-1 was delivered to the DCs in vivo, and it was presented on MHC class I molecules. The cross-presentation of the NY-ESO-1 antigen was absent in conventional DC-deficient mice, suggesting a host DC-mediated CTL response. Thus, this strategy helps generate sufficient CD8+ NY-ESO-1-specific CTLs along with iNKT and NK cell activation, resulting in a strong antitumor effect. Furthermore, we established a human DC-transferred NOD/Shi-scid/IL-2γcnull immunodeficient mouse model and showed that the NY-ESO-1 antigen from aAVC-NY-ESO-1 was cross-presented to antigen-specific CTLs through human DCs. Taken together, these data suggest that aAVC-NY-ESO-1 has potential for harnessing innate and adaptive immunity against NY-ESO-1-expressing malignancies.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos de Neoplasias/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Imunoterapia/métodos , Proteínas de Membrana/administração & dosagem , Adjuvantes Imunológicos/metabolismo , Animais , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/metabolismo , Apresentação Cruzada , Células HEK293 , Humanos , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Células NIH 3T3 , Células T Matadoras Naturais/imunologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Linfócitos T Citotóxicos/imunologia
11.
Commun Biol ; 4(1): 1365, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857854

RESUMO

SARS-CoV-2-specific CD8+ T cells are scarce but detectable in unexposed healthy donors (UHDs). It remains unclear whether pre-existing human coronavirus (HCoV)-specific CD8+ T cells are converted to functionally competent T cells cross-reactive to SARS-CoV-2. Here, we identified the HLA-A24-high binding, immunodominant epitopes in SARS-CoV-2 spike region that can be recognized by seasonal coronavirus-specific CD8+ T cells from HLA-A24+ UHDs. Cross-reactive CD8+ T cells were clearly reduced in patients with hematological malignancy, who are usually immunosuppressed, compared to those in UHDs. Furthermore, we showed that CD8+ T cells in response to a selected dominant epitope display multifunctionality and cross-functionality across HCoVs in HLA-A24+ donors. Cross-reactivity of T-cell receptors isolated from them exhibited selective diversity at the single-cell level. Taken together, when stimulated well by immunodominant epitopes, selective pre-existing CD8+ T cells with high functional avidity may be cross-reactive against SARS-CoV-2.


Assuntos
Antígenos Virais/imunologia , Epitopos Imunodominantes/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Reações Cruzadas , Humanos
12.
Rinsho Ketsueki ; 61(9): 1424-1432, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-33162545

RESUMO

Antitumor immune response is generally suppressed in different ways in many types of tumors. In fact, a variety of immunosuppressive cells, such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages, surround the tumor modulate antigen-presenting cells and effector T cells. The strategy to abreact the immunosuppressive conditions is necessary for a successful immunotherapy against cancers. Particularly, the improvement of the tumor microenvironment (TME) from this point is important for cancer immunotherapy. The checkpoint blockade as the representative success of the cancer immunotherapy can reactive the suppressed T cells. However, the efficacy of this treatment is limited. Therefore, it is necessary to evaluate the TME to establish more valid cancer immunotherapies. In addition, we need to pay attention to the relation of the therapy to immune responses. When tumor cells are killed by the antitumor agents, such as anticancer drugs, it is important that the cell death guides a secondary immune response by the antigen-presenting cells, particularly dendritic cells. Here, we discuss how the positive and negative effects by immune regulatory cells or stimulatory cells influence the subsequent immune dynamics in the TME. This will also lead to the development of new therapies to activate immunosuppressive conditions in the TME.


Assuntos
Antineoplásicos , Neoplasias , Microambiente Tumoral , Antineoplásicos/farmacologia , Humanos , Imunoterapia , Neoplasias/terapia , Linfócitos T Reguladores
13.
iScience ; 23(6): 101238, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32629606

RESUMO

Although PD-L1 expression on tumor is related to the prognosis of immune checkpoint blockade (ICB) therapy, a recent study also demonstrated clinical benefits even in patients without PD-L1 expression. To understand the relationship between innate resistance and antitumor cytotoxic T lymphocyte (CTL) responses especially against neoantigens, the interaction between PD-L1+ or genetically PD-L1-deleted colorectal tumors and CTLs was assessed under an ICB therapy, finding the robust CTL activation in PD-L1-deleted tumor-bearing mice. Using antigen libraries based on immunogenomics, we identified three H2-Kb-restricted, somatic-mutated immunogenic neoantigens by utilizing enhanced CTLs responses due to PD-L1 deficiency. Furthermore, we identified three T cell receptor (TCR) repertoires relevant to the neoantigens, confirming the response of TCR-gene-transduced CTLs to parental tumor cells. Notably, neoantigen-pulsed dendritic cell (DC) therapy reversed the tumor tolerance. Thus, innate resistance of tumors determines their responsiveness to neoantigens and mixed neoantigen peptides may be useful in DC therapy against innate resistance type tumor.

14.
Nat Commun ; 11(1): 1562, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218434

RESUMO

CCL5 is a unique chemokine with distinct stage and cell-type specificities for regulating inflammation, but how these specificities are achieved and how CCL5 modulates immune responses is not well understood. Here we identify two stage-specific enhancers: the proximal enhancer mediates the constitutive CCL5 expression during the steady state, while the distal enhancer located 1.35 Mb from the promoter induces CCL5 expression in activated cells. Both enhancers are antagonized by RUNX/CBFß complexes, and SATB1 further mediates the long-distance interaction of the distal enhancer with the promoter. Deletion of the proximal enhancer decreases CCL5 expression and augments the cytotoxic activity of tissue-resident T and NK cells, which coincides with reduced melanoma metastasis in mouse models. By contrast, increased CCL5 expression resulting from RUNX3 mutation is associated with more tumor metastasis in the lung. Collectively, our results suggest that RUNX3-mediated CCL5 repression is critical for modulating anti-tumor immunity.


Assuntos
Quimiocina CCL5/genética , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Imunidade , Animais , Antígenos CD/metabolismo , Subunidade beta de Fator de Ligação ao Core/metabolismo , Homeostase/genética , Imunidade/genética , Ativação Linfocitária/imunologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
15.
Trends Immunol ; 40(11): 984-997, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31676264

RESUMO

One of the primary goals in tumor immunotherapy is to reset the immune system from tolerogenic to immunogenic - a process in which invariant natural killer T (iNKT) cells are implicated. iNKT cells develop in the thymus and perform immunosurveillance against tumor cells peripherally. When optimally stimulated, iNKT cells differentiate and display more efficient immune functions. Some cells survive and act as effector memory cells. We discuss the putative roles of iNKT cells in antitumor immunity, and posit that it may be possible to develop novel therapeutic strategies to treat cancers using iNKT cells. In particular, we highlight the challenge of uniquely energizing iNKT cell-licensed dendritic cells to serve as effective immunoadjuvants for both arms of the immune system, thus coupling immunological networks.


Assuntos
Vacinas Anticâncer/imunologia , Imunoterapia Adotiva/tendências , Células T Matadoras Naturais/imunologia , Neoplasias/imunologia , Animais , Humanos , Imunidade Celular , Memória Imunológica , Vigilância Imunológica , Ativação Linfocitária , Células T Matadoras Naturais/transplante , Neoplasias/terapia
16.
Front Immunol ; 10: 1450, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293597

RESUMO

Granzyme A (GzmA), together with perforin, are well-known for their cytotoxic activity against tumor or virus-infected cells. In addition to this cytotoxic function, GzmA stimulates several immune cell types and induces inflammation in the absence of perforin, however, its effect on the dendritic cell (DC) is unknown. In the current study, we showed that recombinant GzmA induced the phenotypic maturation of plasmacytoid DCs (pDCs) and conventional DCs (cDCs), but not their apoptosis. Particularly, GzmA made pDCs more functional, thus leading to production of type I interferon (IFN) via the TLR9-MyD88 pathway. We also demonstrated that GzmA binds TLR9 and co-localizes with it in endosomes. When co-administered with antigen, GzmA acted as a powerful adjuvant for eliciting antigen-specific cytotoxic CD8+ T lymphocytes (CTLs) that protected mice from tumor challenge. The induction of CTL was completely abolished in XCR1+ DC-depleted mice, whereas it was reduced to less than half in pDC-depleted or IFN-α/ß receptor knockout mice. Thus, CTL cross-priming was dependent on XCR1+cDC and also type I IFN, which was produced by GzmA-activated pDCs. These results indicate that GzmA -stimulated pDCs enhance the cross-priming activity of cDCs in situ. We also showed that the adjuvant effect of GzmA is superior to CpG-ODN and LPS. Our findings highlight the ability of GzmA to bridge innate and adaptive immune responses via pDC help and suggest that GzmA may be useful as a vaccine adjuvant.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Granzimas/farmacologia , Imunidade Celular/efeitos dos fármacos , Plasmócitos/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Células Dendríticas/citologia , Granzimas/genética , Granzimas/imunologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Plasmócitos/citologia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia
17.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936185

RESUMO

The immune system encompasses acquired and innate immunity that matures through interaction with microenvironmental components. Cytokines serve as environmental factors that foster functional maturation of immune cells. Although NOD/SCID/IL2rgKO (NSG) humanized mice support investigation of human immunity in vivo, a species barrier between human immune cells and the mouse microenvironment limits human acquired as well as innate immune function. To study the roles of human cytokines in human acquired and innate immune cell development, we created NSG mice expressing hIL-7 and hIL-15. Although hIL-7 alone was not sufficient for supporting human NK cell development in vivo, increased frequencies of human NK cells were confirmed in multiple organs of hIL-7 and hIL-15 double knockin (hIL-7xhIL-15 KI) NSG mice engrafted with human hematopoietic stem cells. hIL-7xhIL-15 KI NSG humanized mice provide a valuable in vivo model to investigate development and function of human NK cells.


Assuntos
Diferenciação Celular , Técnicas de Introdução de Genes , Interleucina-15/sangue , Interleucina-15/genética , Interleucina-7/sangue , Interleucina-7/genética , Células Matadoras Naturais/fisiologia , Animais , Antígeno CD56/metabolismo , Feminino , Sangue Fetal/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Modelos Animais , Timo/citologia , Transcriptoma , Transplante Heterólogo
18.
ACS Nano ; 13(1): 305-312, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30606006

RESUMO

Nanomaterial morphology is important for the targeted delivery of drugs to tissues as well as subsequent cellular uptake. Hollow nanotubes composed of peptides, with a diameter of 80 nm and various lengths (100, 200, 300, 600 nm), were successfully capped and sealed with a peptide hemisphere to encapsulate the anticancer drug, cisplatin. The torpedo-shaped nanocapsules with an aspect ratio (length/diameter) of 2.4 showed more rapid cellular uptake and accumulation at the tumor site compared with spherical analogues. Successful delivery of cisplatin to tumors was achieved in a mouse model and tumor growth was efficiently suppressed.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Nanocápsulas/química , Nanotubos/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Cisplatino/farmacocinética , Cisplatino/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Peptídeos/química , Tensoativos/química
19.
Cancer Sci ; 110(3): 875-887, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30629329

RESUMO

Recent immunotherapies have shown clinical success. In particular, vaccines based on particulate antigen (Ag) are expected to be implemented based on their efficacy. In the current study, we describe a strategy entailing Ag-encapsulating PEG-modified liposomes (PGL-Ag) as antigen protein delivery devices and show that the success of the liposome depends on the antigen-presenting cell (APC) capacity; after administration of PGL-Ag, dendritic cells (DCs) in particular take up the Ag and subsequently prime T cells. For the generation of antitumor T cell responses in the lymphoid tissues, the function of encapsulated Ag-capturing DCs in vivo could be a biomarker. We next designed a prime-boost strategy to enhance the antitumor effects of the PGL-Ag. In the tumor sites, we show that Ag retention in nanoparticle-capturing DCs promotes a robust antitumor response. Thus, this efficient particulate Ag-based host antigen-presenting cell delivery strategy provides a bridge between innate and adaptive immune response and offers a novel therapeutic option against tumor cells.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Lipossomos/química , Animais , Biomarcadores Tumorais/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos/métodos , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Linfócitos T/imunologia
20.
Int Immunol ; 30(10): 445-454, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29939325

RESUMO

Most tumors employ multiple strategies to attenuate T-cell-mediated immune responses. In particular, immune suppression surrounding the tumor is achieved by interfering with antigen-presenting cells and effector T cells. Controlling both the tumor and the tumor microenvironment (TME) is critical for cancer treatment. Checkpoint blockade therapy can overcome tumor-induced immune suppression, but more than half of the patients fail to respond to this treatment; therefore, more effective cancer immunotherapies are needed. Generation of an anti-tumor immune response is a multi-step process of immune activation against the tumor that requires effector T cells to recognize and exert toxic effects against tumor cells, for which two strategies are employed-inhibition of various types of immune suppressor cells, such as myeloid cells and regulatory T cells, and establishment of anti-tumor immune surveillance including, activation of natural killer cells and cytotoxic T cells. It was recently shown that anti-cancer drugs not only directly kill tumor cells, but also influence the immune response to cancer by promoting immunogenic cell death, enhancing antigen presentation or depleting immunosuppressive cells. Herein, we review the mechanisms by which tumors exert immune suppression as well as their regulation. We then discuss how the complex reciprocal interactions between immunosuppressive and immunostimulatory cells influence immune cell dynamics in the TME. Finally, we highlight the new therapies that can reverse immune suppression in the TME and promote anti-tumor immunity.


Assuntos
Terapia de Imunossupressão , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Humanos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA