Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 18(9): 1271-1277, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32513897

RESUMO

The mechanism of cancer induction involves an aberrant expression of oncogenes whose functions can be controlled by RNAi with miRNA. Even foreign bacterial RNA may interfere with the expression of oncogenes. Here we show that bacterial plasmid mucAB and its Escherichia coli genomic homolog umuDC, carrying homologies that match the mouse anti-miR-145, sequestered the miR-145 function in mouse BALB 3T3 cells in a tetracycline (Tet)-inducible manner, activated oncogene Nedd9 and its downstream Aurkb, and further enhanced microcolony formation and cellular transformation as well as the short fragments of the bacterial gene containing the anti-miR-145 sequence. Furthermore, mucAB transgenic mice showed a 1.7-fold elevated tumor incidence compared with wild-type mice after treatments with 3-methylcolanthrene. However, the mutation frequency in intestinal stem cells of the mucAB transgenic mice was unchanged after treatment with X-rays or ethyl-nitrosourea, indicating that the target of mucAB/umuDC is the promotion stage in carcinogenesis. IMPLICATIONS: Foreign bacterial genes can exert oncogenic activity via RNAi, if endogenously expressed. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/9/1271/F1.large.jpg.


Assuntos
Aurora Quinase B/genética , Proteínas de Escherichia coli/genética , MicroRNAs/genética , Neoplasias Experimentais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aurora Quinase B/metabolismo , Células 3T3 BALB , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , DNA Polimerase Dirigida por DNA/genética , Genes Bacterianos , Camundongos , MicroRNAs/metabolismo , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Oncogenes , Ativação Transcricional
2.
Radiat Res ; 173(2): 138-47, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20095845

RESUMO

The effect of dose rate on radiation-induced mutations in two somatic tissues, the spleen and liver, was examined in transgenic gpt delta mice. These mice can be used for the detection of deletion-type mutations, and these are the major type of mutation induced by radiation. The dose rates examined were 920 mGy/min, 1 mGy/min and 12.5 microGy/min. In both tissues, the number of mutations increased with increasing dose at each of the three dose rates examined. The mutation induction rate was dependent on the dose rate. The mutation induction rate was higher in the spleen than in the liver at the medium dose rate but was similar in the two tissues at the high and low dose rates. The mutation induction rate in the liver did not show much change between the medium and low dose rates. Analysis of the molecular nature of the mutations indicated that 2- to 1,000-bp deletion mutations were specifically induced by radiation in both tissues after high- and low-dose-rate irradiation. The occurrence of deletion mutation without any sequence homology at the break point was elevated in spleen after high-dose-rate irradiation. The results indicate that the mutagenic effects of radiation in somatic tissues are dependent on dose rate and that there is some variability between tissues.


Assuntos
Proteínas de Escherichia coli/genética , Fígado/efeitos da radiação , Mutação , Pentosiltransferases/genética , Baço/efeitos da radiação , Animais , Sequência de Bases , DNA/genética , Relação Dose-Resposta a Droga , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Baço/metabolismo
3.
Appl Radiat Isot ; 65(9): 1037-40, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17566749

RESUMO

A dosimetry study of mice irradiation at the Kinki University nuclear reactor (UTR-KINKI) has been carried out. Neutron and gamma-ray doses at the irradiation port in the presence of 0, 1, 2, 4 and 6 mice were measured using the paired chamber method. The results show that neutron dose is reduced with increasing numbers of mice. In the six-mice irradiation condition, neutron dose is about 15% smaller compared to a case where no mice were placed in the irradiation port. To investigate the distortion of the neutron spectrum during mice irradiation at UTR-KINKI, a Monte Carlo calculation using the MCNP4C code has been carried out. The measured variation in dose with respect to the total mouse mass was closely reproduced by the calculation results for neutron and gamma-ray dose. Distortion of the neutron spectrum was observed to occur between 1 keV and 1 MeV.


Assuntos
Nêutrons , Reatores Nucleares , Animais , Camundongos , Dosagem Radioterapêutica
5.
Thromb Haemost ; 89(5): 788-94, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12719774

RESUMO

The C2 domain of human factor VIII was expressed in a yeast secretion system and its binding properties were studied. A cDNA coding the C2 domain sequence of human factor VIII with a N-terminal six amino acids extension (C-C2) was constructed, transformed into Pichia pastoris cells and expressed. The product was purified by ammonium sulfate fractionation and anion exchange chromatography. It emerged as a single peak from both ion exchange and gel filtration columns, indicating C-C2 is a homogenous monomer. The binding activity of C-C2 to phosphatidylserine-containing phospholipid vesicles was measured by competitive binding with annexin V. The values of IC50 were approximately 70nM for both factor VIII and its light chain, but were about 7000nM for C-C2. These results indicated C-C2 has 100-fold less binding affinity than factor VIII or the light chain. Direct binding to solidified phosphatidyl-serine-containing phospholipids also showed that C-C2 has approximately 50-fold less binding affinity than does the light chain. C-C2 poorly inhibited Xase activity. These results together clearly show that the C2 domain alone does not have full membrane binding activity, and suggest that the other light chain domains, A3 and/or C1, are also involved in the phospholipid binding activity of factor VIII.


Assuntos
Fator VIII/metabolismo , Fosfolipídeos/metabolismo , Anexina A5/metabolismo , Ligação Competitiva , Clonagem Molecular/métodos , Cisteína Endopeptidases , DNA Complementar/genética , Fator VIII/genética , Fator VIII/isolamento & purificação , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Fosfatidilserinas/metabolismo , Pichia/genética , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA