Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 8(5): e1002711, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22589729

RESUMO

To search for virulence effector genes of the rice blast fungus, Magnaporthe oryzae, we carried out a large-scale targeted disruption of genes for 78 putative secreted proteins that are expressed during the early stages of infection of M. oryzae. Disruption of the majority of genes did not affect growth, conidiation, or pathogenicity of M. oryzae. One exception was the gene MC69. The mc69 mutant showed a severe reduction in blast symptoms on rice and barley, indicating the importance of MC69 for pathogenicity of M. oryzae. The mc69 mutant did not exhibit changes in saprophytic growth and conidiation. Microscopic analysis of infection behavior in the mc69 mutant revealed that MC69 is dispensable for appressorium formation. However, mc69 mutant failed to develop invasive hyphae after appressorium formation in rice leaf sheath, indicating a critical role of MC69 in interaction with host plants. MC69 encodes a hypothetical 54 amino acids protein with a signal peptide. Live-cell imaging suggested that fluorescently labeled MC69 was not translocated into rice cytoplasm. Site-directed mutagenesis of two conserved cysteine residues (Cys36 and Cys46) in the mature MC69 impaired function of MC69 without affecting its secretion, suggesting the importance of the disulfide bond in MC69 pathogenicity function. Furthermore, deletion of the MC69 orthologous gene reduced pathogenicity of the cucumber anthracnose fungus Colletotrichum orbiculare on both cucumber and Nicotiana benthamiana leaves. We conclude that MC69 is a secreted pathogenicity protein commonly required for infection of two different plant pathogenic fungi, M. oryzae and C. orbiculare pathogenic on monocot and dicot plants, respectively.


Assuntos
Colletotrichum/patogenicidade , Proteínas Fúngicas/metabolismo , Magnaporthe/patogenicidade , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Colletotrichum/genética , Cucumis sativus/microbiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Hordeum/microbiologia , Magnaporthe/genética , Mutação , Oryza/microbiologia , Deleção de Sequência , Nicotiana/microbiologia
2.
Plant J ; 49(6): 1030-40, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17319846

RESUMO

A high-throughput overexpression screen of Nicotiana benthamiana cDNAs identified a gene for a mitogen-activated protein kinase kinase (MAPKK) as a potent inducer of the hypersensitive response (HR)-like cell death. NbMKK1 protein is localized to the nucleus, and the N-terminal putative MAPK docking site of NbMKK1 is required for its function as a cell-death inducer. NbMKK1-mediated leaf-cell death was compromised in leaves where NbSIPK expression was silenced by virus-induced gene silencing. A yeast two-hybrid assay showed that NbMKK1 and NbSIPK physically interact, suggesting that NbSIPK is one of the downstream targets of NbMKK1. Phytophthora infestans INF1 elicitor-mediated HR was delayed in NbMKK1-silenced plants, indicating that NbMKK1 is involved in this HR pathway. Furthermore, the resistance of N. benthamiana to a non-host pathogen Pseudomonas cichorii was compromised in NbMKK1-silenced plants. These results demonstrate that MAPK cascades involving NbMKK1 control non-host resistance including HR cell death.


Assuntos
Morte Celular/fisiologia , Imunidade Inata/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Pseudomonas/fisiologia , Transdução de Sinais/fisiologia , Núcleo Celular/metabolismo , Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Doenças das Plantas , Nicotiana
3.
Plant Signal Behav ; 2(5): 396-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19704612

RESUMO

A high-throughput in planta overexpression screen of a Nicotiana benthamiana cDNA library identified a mitogen activated protein kinase kinase (MAPKK), NbMKK1, as a potent inducer of hypersensitive response (HR)-like cell death. NbMKK1-mediated cell death was attenuated in plants whereby expression of NbSIPK, an ortholog of tobacco SIPK and Arabidopsis AtMPK6, was knocked down by virus-induced gene silencing (VIGS), suggesting that NbMKK1 functions upstream of NbSIPK. In accordance with this result, NbMKK1 phosphorylated NbSIPK in vitro, and furthermore NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. VIGS of NbMKK1 in N. benthamiana resulted in a delay of Phytophthora infestans INF1 elicitin-mediated HR as well as in the reduction of resistance against a non-host pathogen Pseudomonas cichorii. Our data of NbMKK1, together with that of LeMKK4,1 demonstrate the presence of a novel defense signaling pathway involving NbMKK1/LeMKK4 and SIPK.

4.
Plant J ; 43(4): 491-505, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16098104

RESUMO

We performed high-throughput screening using the potato virus X (PVX) system to overexpress Nicotiana benthamiana genes in planta and identify positive regulators of cell death. This screening identified NbCD1, a novel class II ethylene-responsive element binding factor (ERF), as a potent inducer of the hypersensitive response (HR)-like cell death. NbCD1 expression was induced by treatments with INF1 elicitor and a non-host pathogen Pseudomonas cichorii. NbCD1 exhibited transcriptional repressor activity through its EAR motif, and this motif was necessary for NbCD1 to cause cell death. We identified 58 genes that displayed altered transcription following NbCD1 overexpression. NbCD1 overexpression downregulated the expression of HSR203, a negative regulator of hypersensitive death. Conditional expression of NbCD1 in Arabidopsis also caused cell death, indicating that NbCD1 downstream cascades are conserved in dicot plants. To further confirm the role of NbCD1 in defense, we used virus-induced gene silencing to demonstrate that NbCD1 is required for non-host resistance of N. benthamiana to the bacterial pathogen P. cichorii. Our data point to a model of transcriptional regulatory cascades. NbCD1 positively regulates cell death and contributes to non-host resistance, possibly by downregulating the expression of other defense response genes.


Assuntos
Apoptose/fisiologia , Proteínas de Ligação a DNA/fisiologia , Nicotiana/metabolismo , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , DNA Complementar/metabolismo , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Filogenia , Phytophthora , Proteínas de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Nicotiana/citologia , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA