Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Bacteriol ; 203(16): e0002521, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34096778

RESUMO

Serine kinase catalyzes the phosphorylation of free serine (Ser) to produce O-phosphoserine (Sep). An ADP-dependent Ser kinase in the hyperthermophilic archaeon Thermococcus kodakarensis (Tk-SerK) is involved in cysteine (Cys) biosynthesis and most likely Ser assimilation. An ATP-dependent Ser kinase in the mesophilic bacterium Staphylococcus aureus is involved in siderophore biosynthesis. Although proteins displaying various degrees of similarity with Tk-SerK are distributed in a wide range of organisms, it is unclear if they are actually Ser kinases. Here, we examined proteins from Desulfurococcales species in Crenarchaeota that display moderate similarity with Tk-SerK from Euryarchaeota (42 to 45% identical). Tk-serK homologs from Staphylothermus marinus (Smar_0555), Desulfurococcus amylolyticus (DKAM_0858), and Desulfurococcus mucosus (Desmu_0904) were expressed in Escherichia coli. All three partially purified recombinant proteins exhibited Ser kinase activity utilizing ATP rather than ADP as a phosphate donor. Purified Smar_0555 protein displayed activity for l-Ser but not other compounds, including d-Ser, l-threonine, and l-homoserine. The enzyme utilized ATP, UTP, GTP, CTP, and the inorganic polyphosphates triphosphate and tetraphosphate as phosphate donors. Kinetic analysis indicated that the Smar_0555 protein preferred nucleoside 5'-triphosphates over triphosphate as a phosphate donor. Transcript levels and Ser kinase activity in S. marinus cells grown with or without serine suggested that the Smar_0555 gene is constitutively expressed. The genes encoding Ser kinases examined here form an operon with genes most likely responsible for the conversion between Sep and 3-phosphoglycerate of central sugar metabolism, suggesting that the ATP-dependent Ser kinases from Desulfurococcales play a role in the assimilation of Ser. IMPORTANCE Homologs of the ADP-dependent Ser kinase from the archaeon Thermococcus kodakarensis (Tk-SerK) include representatives from all three domains of life. The results of this study show that even homologs from the archaeal order Desulfurococcales, which are the most structurally related to the ADP-dependent Ser kinases from the Thermococcales, are Ser kinases that utilize ATP, and in at least some cases inorganic polyphosphates, as the phosphate donor. The differences in properties between the Desulfurococcales and Thermococcales enzymes raise the possibility that Tk-SerK homologs constitute a group of kinases that phosphorylate free serine with a wide range of phosphate donors.


Assuntos
Proteínas Arqueais/metabolismo , Desulfurococcaceae/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Desulfurococcaceae/classificação , Desulfurococcaceae/genética , Temperatura Alta , Cinética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Cells ; 10(5)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922380

RESUMO

A Ca2+-activated monovalent cation-selective TRPM4 channel is abundantly expressed in the heart. Recently, a single gain-of-function mutation identified in the distal N-terminus of the human TRPM4 channel (Glu5 to Lys5; E7K) was found to be arrhythmogenic because of enhanced cell membrane expression. In this study, we conducted detailed analyses of this mutant channel from more functional aspects, in comparison with its wild type (WT). In an expression system, intracellular application of a short soluble PIP2 (diC8PIP2) restored the single-channel activities of both WT and E7K, which had quickly faded after membrane excision. The potency (Kd) of diC8PIP2 for this recovery was stronger in E7K than its WT (1.44 vs. 2.40 µM). FRET-based PIP2 measurements combined with the Danio rerio voltage-sensing phosphatase (DrVSP) and patch clamping revealed that lowering the endogenous PIP2 level by DrVSP activation reduced the TRPM4 channel activity. This effect was less prominent in E7K than its WT (apparent Kd values estimated from DrVSP-mediated PIP2 depletion: 0.97 and 1.06 µM, respectively), being associated with the differential PIP2-mediated modulation of voltage dependence. Moreover, intracellular perfusion of short N-terminal polypeptides containing either the 'WT' or 'E7K' sequences respectively attenuated the TRPM4 channel activation at whole-cell and single-channel levels, but in both configurations, the E7K polypeptide exerted greater inhibitory effects. These results collectively suggest that N-terminal interaction with endogenous PIP2 is essential for the TRPM4 channel to function, the extent of which may be abnormally strengthened by the E7K mutation through modulating voltage-dependent activation. The altered PIP2 interaction may account for the arrhythmogenic potential of this mutation.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/patologia , Mutação com Ganho de Função , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Arritmias Cardíacas/genética , Células HEK293 , Humanos
3.
Arterioscler Thromb Vasc Biol ; 40(6): 1559-1573, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32321307

RESUMO

OBJECTIVE: Excessive prostaglandin E2 production is a hallmark of abdominal aortic aneurysm (AAA). Enhanced expression of prostaglandin E2 receptor EP4 (prostaglandin E receptor 4) in vascular smooth muscle cells (VSMCs) has been demonstrated in human AAAs. Although moderate expression of EP4 contributes to vascular homeostasis, the roles of excessive EP4 in vascular pathology remain uncertain. We aimed to investigate whether EP4 overexpression in VSMCs exacerbates AAAs. Approach and Results: We constructed mice with EP4 overexpressed selectively in VSMCs under an SM22α promoter (EP4-Tg). Most EP4-Tg mice died within 2 weeks of Ang II (angiotensin II) infusion due to AAA, while nontransgenic mice given Ang II displayed no overt phenotype. EP4-Tg developed much larger AAAs than nontransgenic mice after periaortic CaCl2 application. In contrast, EP4fl/+;SM22-Cre;ApoE-/- and EP4fl/+;SM22-Cre mice, which are EP4 heterozygous knockout in VSMCs, rarely exhibited AAA after Ang II or CaCl2 treatment, respectively. In Ang II-infused EP4-Tg aorta, Ly6Chi inflammatory monocyte/macrophage infiltration and MMP-9 (matrix metalloprotease-9) activation were enhanced. An unbiased analysis revealed that EP4 stimulation positively regulated the genes binding cytokine receptors in VSMCs, in which IL (interleukin)-6 was the most strongly upregulated. In VSMCs of EP4-Tg and human AAAs, EP4 stimulation caused marked IL-6 production via TAK1 (transforming growth factor-ß-activated kinase 1), NF-κB (nuclear factor-kappa B), JNK (c-Jun N-terminal kinase), and p38. Inhibition of IL-6 prevented Ang II-induced AAA formation in EP4-Tg. In addition, EP4 stimulation decreased elastin/collagen cross-linking protein LOX (lysyl oxidase) in both human and mouse VSMCs. CONCLUSIONS: Dysregulated EP4 overexpression in VSMCs promotes inflammatory monocyte/macrophage infiltration and attenuates elastin/collagen fiber formation, leading to AAA exacerbation.


Assuntos
Aneurisma da Aorta Abdominal/etiologia , Inflamação/etiologia , Músculo Liso Vascular/metabolismo , Receptores de Prostaglandina E Subtipo EP4/fisiologia , Transdução de Sinais/fisiologia , Angiotensina II/administração & dosagem , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aneurisma da Aorta Abdominal/patologia , Cloreto de Cálcio/administração & dosagem , Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Humanos , Interleucina-6/genética , Macrófagos/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , Camundongos Transgênicos , Monócitos/patologia , Músculo Liso Vascular/química , Miócitos de Músculo Liso/metabolismo , Proteína-Lisina 6-Oxidase/análise , Proteína-Lisina 6-Oxidase/genética , Receptores de Citocinas/genética , Receptores de Prostaglandina E Subtipo EP4/genética
4.
ESC Heart Fail ; 7(2): 588-603, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31984667

RESUMO

AIMS: Doxorubicin (DOX)-induced heart failure has a poor prognosis, and effective treatments have not been established. Because DOX shows cumulative cardiotoxicity, we hypothesized that minimal cardiac remodelling occurred at the initial stage in activating cardiac fibroblasts. Our aim was to investigate the initial pathophysiology of DOX-exposed cardiac fibroblasts and propose prophylaxis. METHODS AND RESULTS: An animal study was performed using a lower dose of DOX (4 mg/kg/week for 3 weeks, i.p.) than a toxic cumulative dose. Histological analysis was performed with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay, picrosirius red staining, and immunohistochemical staining. The mechanism was analysed in vitro with a low dose of DOX, which did not induce cell apoptosis. Microarray analysis was performed. Differentially expressed genes were confirmed by enrichment analysis. Mitochondrial damage was assessed by mitochondrial membrane potential. The production of inflammatory cytokines and fibrosis markers was assessed by western blot, quantitative polymerase chain reaction, and ELISA. A phosphokinase antibody array was performed to detect related signalling pathways. Low-dose DOX did not induced cell death, and fibrosis was localized to the perivascular area in mice. Microarray analysis suggested that DOX induced genes associated with the innate immune system and inflammatory reactions, resulting in cardiac remodelling. DOX induced mitochondrial damage and increased the expression of interleukin-1. DOX also promoted the expression of fibrotic markers, such as alpha smooth muscle actin and galectin-3. These responses were induced through stress-activated protein kinase/c-Jun NH2-terminal kinase signalling. A peroxisome proliferator-activated receptor (PPARγ) agonist attenuated the expression of fibrotic markers through suppressing stress-activated protein kinase/c-Jun NH2-terminal kinase. Furthermore, this molecule also suppressed DOX-induced early fibrotic responses in vivo. CONCLUSIONS: Low-dose DOX provoked reactive fibrosis through sterile inflammation evoked by the damaged mitochondria.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Doxorrubicina , Fibrose , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Inflamação , Camundongos , Miócitos Cardíacos/patologia
5.
Cancer Sci ; 111(1): 160-174, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31755615

RESUMO

The EP4 prostanoid receptors are one of four receptor subtypes for prostaglandin E2 (PGE2 ). Therefore, EP4 may play an important role in cancer progression. However, little information is available regarding their function per se, including migration and the cellular signaling pathway of EP4 in oral cancer. First, we found that mRNA and protein expression of EP4 was abundantly expressed in human-derived tongue squamous cell carcinoma cell lines HSC-3 and OSC-19. The EP4 agonist (ONO-AE1-437) significantly promoted cell migration in HSC-3 cells. In contrast, knockdown of EP4 reduced cell migration. Furthermore, we confirmed that knockdown of EP4 suppressed metastasis of oral cancer cells in the lungs of mice in vivo. Therefore, we focused on the mechanism of migration/metastasis in EP4 signaling. Interestingly, EP4 agonist significantly induced intracellular Ca2+ elevation not in only oral cancer cells but also in other cells, including normal cells. Furthermore, we found that EP4 activated PI3K and induced Ca2+ influx through Orai1 without activation of store depletion and stromal interaction molecule 1 (STIM1). Immunoprecipitation showed that EP4 formed complexes with Orai1 and TRPC1, but not with STIM. Moreover, the EP4 agonist ONO-AE1-437 phosphorylated ERK and activated MMP-2 and MMP-9. Knockdown of Orai1 negated EP4 agonist-induced ERK phosphorylation. Taken together, our data suggested that EP4 activated PI3K and then induced Ca2+ influx from the extracellular space through Orai1, resulting in ERK phosphorylation and promoting cell migration. Migration is regulated by EP4/PI3K/Orai1 signaling in oral cancer.


Assuntos
Movimento Celular/fisiologia , Proteína ORAI1/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Cálcio/metabolismo , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Humanos , Células MCF-7 , Fosforilação/fisiologia , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Neoplasias da Língua/metabolismo
6.
PLoS One ; 14(9): e0221940, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513610

RESUMO

Although doxorubicin (DOX)-induced cardiomyopathy causes lethal heart failure (HF), no early detection or effective treatment methods are available. The principal mechanisms of cardiotoxicity are considered to involve oxidative stress and apoptosis of cardiomyocytes. However, the effect of DOX on cardiac fibroblasts at non-lethal concentrations remains unknown. The aim of this study was to investigate the direct effect of doxorubicin on the activation of cardiac fibroblasts independent of cell death pathways. We first found that DOX induced α-SMA expression (marker of trans-differentiation) at a low concentration range, which did not inhibit cell viability. DOX also increased MMP1, IL-6, TGF-ß and collagen expression in human cardiac fibroblasts (HCFs). In addition, DOX promoted Akt and Smad phosphorylation. A Smad inhibitor prevented DOX-induced α-SMA and IL-6 protein expression. An PI3K inhibitor also prevented MMP1 mRNA expression in HCFs. These findings suggest that DOX directly induces fibrotic changes in HCFs via cell death-independent pathways. Furthermore, we confirmed that these responses are organ- and species-specific for HCFs based on experiments using different types of human and murine fibroblast cell lines. These results suggest potentially new mechanisms of DOX-induced cardiotoxicity from the viewpoint of fibrotic changes in cardiac fibroblasts.


Assuntos
Doxorrubicina/farmacologia , Fibroblastos/citologia , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 1 da Matriz/genética , Miócitos Cardíacos/citologia , Actinas/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Transdução de Sinais/efeitos dos fármacos , Especificidade da Espécie
7.
Cell Death Dis ; 10(8): 549, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320615

RESUMO

Prevention of cardiomyocyte death is an important therapeutic strategy for heart failure. In this study, we focused on translationally controlled tumor protein (TCTP), a highly conserved protein that is expressed ubiquitously in mammalian tissues, including heart. TCTP plays pivotal roles in survival of certain cell types, but its function in cardiomyocytes has not been examined. We aimed to clarify the role of TCTP in cardiomyocyte survival and the underlying mechanism. Here, we demonstrated that downregulation of TCTP with siRNA induced cell death of cardiomyocytes with apoptotic and autophagic features, accompanied with mitochondrial permeability transition pore (mPTP) opening. TCTP loss did not induce cell death of cardiac fibroblasts. Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) was found to mediate the TCTP-loss-induced cardiomyocyte death. In exploring the clinical significance of the TCTP expression in the heart, we found that DOX treatment markedly downregulated the protein expression of TCTP in cultured cardiomyocytes and in mouse heart tissue. Exogenous rescue of TCTP expression attenuated DOX-induced cardiomyocyte death. In mice, cardiomyocyte-specific overexpression of TCTP resulted in decreased susceptibility to DOX-induced cardiac dysfunction, accompanied with attenuated induction of Bnip3. Dihydroartemisinin, a pharmacological TCTP inhibitor, induced development of heart failure and cardiomyocyte death in control mice, but not in mice with cardiomyocyte-specific TCTP overexpression. Our findings revealed TCTP has a pivotal role in cardiomyocyte survival, at least in part through a Bnip3-dependent mechanism. TCTP could be considered as a candidate therapeutic target to prevent DOX-induced heart failure.


Assuntos
Biomarcadores Tumorais/metabolismo , Sobrevivência Celular/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Células Cultivadas , Doxorrubicina/toxicidade , Insuficiência Cardíaca/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Proteína Tumoral 1 Controlada por Tradução
8.
J Physiol Sci ; 69(2): 175-184, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30084082

RESUMO

Vascular smooth muscle cell (VSMC) migration and the subsequent intimal thickening play roles in vascular restenosis. We previously reported that an exchange protein activated by cAMP 1 (Epac1) promotes platelet-derived growth factor (PDGF)-induced VSMC migration and intimal thickening. Because basic fibroblast growth factor (bFGF) also plays a pivotal role in restenosis, we examined whether Epac1 was involved in bFGF-mediated VSMC migration. bFGF-induced lamellipodia formation and migration were significantly decreased in VSMCs obtained from Epac1-/- mice compared to those in Epac1+/+-VSMCs. The bFGF-induced phosphorylation of Akt and glycogen synthase kinase 3ß (GSK3ß), which play a role in bFGF-induced cell migration, was attenuated in Epac1-/--VSMCs. Intimal thickening induced by the insertion of a large wire was attenuated in Epac1-/- mice, and was accompanied by the decreased phosphorylation of GSK3ß. These data suggest that Epac1 deficiency attenuates bFGF-induced VSMC migration, possibly via Akt/GSK3ß pathways.


Assuntos
Movimento Celular/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/deficiência , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Animais , Células Cultivadas , Reestenose Coronária/metabolismo , Reestenose Coronária/fisiopatologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
9.
Circ J ; 83(2): 295-303, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30518738

RESUMO

BACKGROUND: It has been suggested that protein directly activated by cAMP (Epac), one of the downstream signaling molecules of ß-adrenergic receptor (ß-AR), may be an effective target for the treatment of arrhythmia. However, there have been no reports on the anti-arrhythmic effects or cardiac side-effects of Epac1 inhibitors in vivo. Methods and Results: In this study, the roles of Epac1 in the development of atrial and ventricular arrhythmias are examined. In addition, we examined the usefulness of CE3F4, an Epac1-selective inhibitor, in the treatment of the arrhythmias in mice. In Epac1 knockout (Epac1-KO) mice, the duration of atrial fibrillation (AF) was shorter than in wild-type mice. In calsequestrin2 knockout mice, Epac1 deficiency resulted in a reduction of ventricular arrhythmia. In both atrial and ventricular myocytes, sarcoplasmic reticulum (SR) Ca2+ leak, a major trigger of arrhythmias, and spontaneous SR Ca2+ release (SCR) were attenuated in Epac1-KO mice. Consistently, CE3F4 treatment significantly prevented AF and ventricular arrhythmia in mice. In addition, the SR Ca2+ leak and SCR were significantly inhibited by CE3F4 treatment in both atrial and ventricular myocytes. Importantly, cardiac function was not significantly affected by a dosage of CE3F4 sufficient to exert anti-arrhythmic effects. CONCLUSIONS: These findings indicated that Epac1 is involved in the development of atrial and ventricular arrhythmias. CE3F4, an Epac1-selective inhibitor, prevented atrial and ventricular arrhythmias in mice.


Assuntos
Fibrilação Atrial/prevenção & controle , AMP Cíclico/antagonistas & inibidores , Fibrilação Ventricular/prevenção & controle , Animais , Fibrilação Atrial/etiologia , Cálcio/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Camundongos , Camundongos Knockout , Quinolinas/uso terapêutico , Retículo Sarcoplasmático/metabolismo , Fibrilação Ventricular/etiologia
10.
Cancer Sci ; 109(11): 3483-3493, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30155931

RESUMO

We previously reported the efficacy of anti-cancer therapy with hyperthermia using an alternating magnetic field (AMF) and a magnetic compound. In the course of the study, unexpectedly, we found that an AMF enhances the cytotoxicity of Compound C, an activated protein kinase (AMPK) inhibitor, although this compound is not magnetic. Therefore, we examined the cellular mechanism of AMF-induced cytotoxicity of Compound C in cultured human glioblastoma (GB) cells. An AMF (280 kHz, 250 Arms) for 30 minutes significantly enhanced the cytotoxicity of Compound C and promoted apoptosis towards several human GB cell lines in vitro. The AMF also increased Compound C-induced cell-cycle arrest of GB cells at the G2 phase and, thus, inhibited cell proliferation. The AMF increased Compound C-induced reactive oxygen species production. Furthermore, the AMF decreased ERK phosphorylation in the presence of Compound C and suppressed the protective autophagy induced by this compound. The application of an AMF in cancer chemotherapy may be a simple and promising method, which might reduce the doses of drugs used in future cancer treatment and, therefore, the associated side effects.


Assuntos
Neoplasias Encefálicas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Hipertermia Induzida , Campos Magnéticos , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
Physiol Rep ; 6(9): e13687, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29722156

RESUMO

Mechanical stresses play important roles in the process of constructing and modifying heart structure. It has been well established that stretch force acting on cardiac fibroblasts induces fibrosis. However, the effects of compressive force, that is, hydrostatic pressure (HP), have not been well elucidated. We thus evaluated the effects of HP using a pressure-loading apparatus in human cardiac fibroblasts (HCFs) in vitro. In this study, high HP (200 mmHg) resulted in significant phosphorylation of Akt in HCFs. HP then greatly inhibited glycogen synthase kinase 3 (GSK-3)α, which acts downstream of the PI3K/Akt pathway. Similarly, HP suppressed mRNA transcription of inflammatory cytokine-6, collagen I and III, and matrix metalloproteinase 1, compared with an atmospheric pressure condition. Furthermore, HP inhibited collagen matrix production in a three-dimensional HCF culture. Taken together, high HP suppressed the differentiation of fibroblasts into the myofibroblast phenotype. HP under certain conditions suppressed cardiac fibrosis via Akt/GSK-3 signaling in HCFs. These results might help to elucidate the pathology of some types of heart disease.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Pressão Hidrostática , Miofibroblastos/metabolismo , Proteína Oncogênica v-akt/metabolismo , Diferenciação Celular , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Fosforilação , Transdução de Sinais , Estresse Fisiológico
12.
Oncotarget ; 9(21): 15591-15605, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29643995

RESUMO

N,N'-Bis(salicylidene)ethylenediamine iron (Fe(Salen)) is an anti-cancer agent with intrinsic magnetic property. Here, we covalently linked Fe(Salen) to paclitaxel (PTX), a widely used anti-cancer drug, to obtain a magnetized paclitaxel conjugate (M-PTX), which exhibited magnetic characteristics for magnet-guided drug delivery and MRI visualization. M-PTX increased apoptosis and G2/M arrest of cultured human oral cancer cell lines in the same manner as PTX. Furthermore, marked contrast intensity was obtained in magnetic resonance imaging (MRI) of M-PTX. In a mouse oral cancer model, a permanent magnet placed on the body surface adjacent to the tumor resulted in distinct accumulation of M-PTX, and the anti-cancer effect was greater than that of M-PTX without the magnet. We believe that this strategy may improve future cancer chemotherapy by providing conventional anti-cancer drugs with novel functionalities such as magnet-guided drug delivery or MRI-based visualization/quantitation of drug distribution.

13.
Sci Rep ; 8(1): 6277, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674727

RESUMO

Transforming growth factor-ß1 (TGF-ß1) induces phenotypic changes in fibroblasts to become myofibroblasts with increased production of extracellular matrix (ECM) components and cytokines. It is also known that excessive activation of myofibroblasts accelerates cardiac fibrosis, remodeling, and thus cardiac dysfunction. However, no effective therapy has been established to prevent this process although recent clinical studies have demonstrated the effectiveness of hyperthermia in cardiac dysfunction. The aim of this study was to examine the molecular mechanism of hyperthermia on TGF-ß1-mediated phenotypic changes in cardiac fibroblasts. TGF-ß1 increased the expression of IL-6, α-smooth muscle actin (α-SMA), and collagen in human cardiac fibroblasts (HCFs). Hyperthermia (42 °C) significantly prevented these changes, i.e., increases in IL-6, α-SMA, and collagen, as induced by TGF-ß1 in a time-dependent manner. Immunoblotting showed that hyperthermia decreased Akt/S6K signaling, but did not affect Smad2 and Smad3 signaling. Pharmacological inhibition of Akt signaling mimicked these effects of hyperthermia. Furthermore, hyperthermia treatment prevented cardiac fibrosis in Ang II infusion mice model. Putting together, our findings suggest that hyperthermia directly inhibits TGF-ß-mediated activation of HCFs via suppressing Akt/S6K signaling.


Assuntos
Febre/metabolismo , Fibroblastos/metabolismo , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Actinas/metabolismo , Doença Aguda , Angiotensina II/administração & dosagem , Animais , Modelos Animais de Doenças , Febre/enzimologia , Febre/patologia , Humanos , Interleucina-6/biossíntese , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/citologia , RNA Mensageiro/genética
14.
J Physiol Sci ; 68(1): 77-87, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27995459

RESUMO

Pro-inflammatory cytokines are released in septic shock and impair cardiac function via the Jak-STAT pathway. It is well known that sympathetic and thus catecholamine signaling is activated thereafter to compensate for cardiac dysfunction. The mechanism of such compensation by catecholamine signaling has been traditionally understood to be cyclic AMP-dependent protein kinase (PKA)-mediated enforcement of cardiac contractility. We hypothesized that the exchange protein activated by cAMP (Epac), a newly identified target of cAMP signaling that functions independently of PKA, also plays a key role in this mechanism. In cultured cardiac myocytes, activation of Epac attenuated the inhibitory effect of interleukin-6 on the increase of intracellular Ca2+ concentration and contractility in response to isoproterenol, most likely through inhibition of the Jak-STAT pathway via SOCS3, with subsequent changes in inducible nitric oxide synthase expression. These findings suggest a new role of catecholamine signaling in compensating for cardiac dysfunction in heart failure. Epac and its downstream pathway may be a novel target for treating cardiac dysfunction in endotoxemia.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Interleucina-6/metabolismo , Miócitos Cardíacos/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Janus Quinases/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/fisiologia , Ratos , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
15.
J Pharmacol Sci ; 134(4): 203-210, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28779994

RESUMO

Iron-salen, i.e., µ-oxo-N,N'-bis(salicylidene)ethylenediamine iron (Fe(Salen)) was a recently identified as a new anti-cancer compound with intrinsic magnetic properties. Chelation therapy has been widely used in management of metallic poisoning, because an administration of agents that bind metals can prevent potential lethal effects of particular metal. In this study, we confirmed the therapeutic effect of deferoxamine mesylate (DFO) chelation against Fe(Salen) as part of the chelator antidote efficacy. DFO administration resulted in reduced cytotoxicity and ROS generation by Fe(Salen) in cancer cells. DFO (25 mg/kg) reduced the onset of Fe(Salen) (25 mg/kg)-induced acute liver and renal dysfunction. DFO (300 mg/kg) improves survival rate after systematic injection of a fatal dose of Fe(Salen) (200 mg/kg) in mice. DFO enables the use of higher Fe(Salen) doses to treat progressive states of cancer, and it also appears to decrease the acute side effects of Fe(Salen). This makes DFO a potential antidote candidate for Fe(Salen)-based cancer treatments, and this novel strategy could be widely used in minimally-invasive clinical settings.


Assuntos
Antídotos , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Quelantes/efeitos adversos , Quelantes/toxicidade , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Etilenodiaminas/efeitos adversos , Etilenodiaminas/toxicidade , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Ferro/efeitos adversos , Ferro/toxicidade , Injúria Renal Aguda/induzido quimicamente , Animais , Antineoplásicos/administração & dosagem , Quelantes/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Relação Dose-Resposta a Droga , Etilenodiaminas/administração & dosagem , Humanos , Ferro/administração & dosagem , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
16.
ACS Chem Biol ; 12(6): 1514-1523, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28358477

RESUMO

A free serine kinase (SerK) is involved in l-cysteine biosynthesis in the hyperthermophilic archaeon Thermococcus kodakarensis. The enzyme converts ADP and l-serine (Ser) into AMP and O-phospho-l-serine (Sep), which is a precursor of l-cysteine. SerK is the first identified enzyme that phosphorylates free serine, while serine/threonine protein kinases have been well studied. SerK displays low sequence similarities to known kinases, suggesting that its reaction mechanism is different from those of known kinases. Here, we determined the crystal structures of SerK from T. kodakarensis (Tk-SerK). The overall structure is divided into two domains. A large cleft is found between the two domains in the AMP complex and in the ADP complex. The cleft is closed in the ternary product complex (Sep, AMP, and Tk-SerK) and may also be in the ternary substrate complex (Ser, ADP, and Tk-SerK). The closure may reorient the carboxyl group of E30 near to the Oγ atom of Ser. The Oγ atom is considered to be deprotonated by E30 and to attack the ß-phosphate of ADP to form Sep. The substantial decrease in the activity of the E30A mutant is consistent with this mechanism. Our structures also revealed the residues that contribute to the ligand binding. The conservation of these residues in uncharacterized proteins from bacteria may raise the possibility of the presence of free Ser kinases not only in archaea but also in bacteria.


Assuntos
Cisteína/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Thermococcus/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias , Cristalografia por Raios X , Ligantes , Estrutura Molecular , Fosfosserina/metabolismo , Domínios Proteicos , Proteínas Serina-Treonina Quinases/química , Thermococcus/enzimologia
17.
Sci Rep ; 7: 42783, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28218292

RESUMO

We previously reported that µ-oxo N,N'-bis(salicylidene)ethylenediamine iron [Fe(Salen)], a magnetic organic compound, has direct anti-tumor activity, and generates heat in an alternating magnetic field (AMF). We showed that Fe(Salen) nanoparticles are useful for combined hyperthermia-chemotherapy of tongue cancer. Here, we have examined the effect of Fe(Salen) on human glioblastoma (GB). Fe(Salen) showed in vitro anti-tumor activity towards several human GB cell lines. It inhibited cell proliferation, and its apoptosis-inducing activity was greater than that of clinically used drugs. Fe(Salen) also showed in vivo anti-tumor activity in the mouse brain. We evaluated the drug distribution and systemic side effects of intracerebrally injected Fe(Salen) nanoparticles in rats. Further, to examine whether hyperthermia, which was induced by exposing Fe(Salen) nanoparticles to AMF, enhanced the intrinsic anti-tumor effect of Fe(Salen), we used a mouse model grafted with U251 cells on the left leg. Fe(Salen), BCNU, or normal saline was injected into the tumor in the presence or absence of AMF exposure. The combination of Fe(Salen) injection and AMF exposure showed a greater anti-tumor effect than did either Fe(Salen) or BCNU alone. Our results indicate that hyperthermia and chemotherapy with single-drug nanoparticles could be done for GB treatment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/terapia , Etilenodiaminas/administração & dosagem , Glioblastoma/terapia , Hipertermia Induzida/métodos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Etilenodiaminas/farmacologia , Humanos , Camundongos , Nanopartículas , Ratos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Physiol Sci ; 67(4): 497-505, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27613608

RESUMO

Melanoma has an extremely poor prognosis due to its rapidly progressive and highly metastatic nature. Several therapeutic drugs have recently become available, but are effective only against melanoma with specific BRAF gene mutation. Thus, there is a need to identify other target molecules. We show here that Transient receptor potential, canonical 3 (TRPC3) is widely expressed in human melanoma. We found that pharmacological inhibition of TRPC3 with a pyrazole compound, Pyr3, decreased melanoma cell proliferation and migration. Similar inhibition was observed when the TRPC3 gene was silenced with short-hairpin RNA (shRNA). Pyr3 induced dephosphorylation of signal transducer and activator of transcription (STAT) 5 and Akt. Administration of Pyr3 (0.05 mg/kg) to mice implanted with human melanoma cells (C8161) significantly inhibited tumor growth. Our findings indicate that TRPC3 plays an important role in melanoma growth, and may be a novel target for treating melanoma in patients.


Assuntos
Movimento Celular , Proliferação de Células , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Interferência de RNA , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Fatores de Tempo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Mol Life Sci ; 74(4): 591-606, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27549789

RESUMO

As one of the most important second messengers, 3',5'-cyclic adenosine monophosphate (cAMP) mediates various extracellular signals including hormones and neurotransmitters, and induces appropriate responses in diverse types of cells. Since cAMP was formerly believed to transmit signals through only two direct target molecules, protein kinase A and the cyclic nucleotide-gated channel, the sensational discovery in 1998 of another novel direct effecter of cAMP [exchange proteins directly activated by cAMP (Epac)] attracted a great deal of scientific interest in cAMP signaling. Numerous studies on Epac have since disclosed its important functions in various tissues in the body. Recently, observations of genetically manipulated mice in various pathogenic models have begun to reveal the in vivo significance of previous in vitro or cellular-level findings. Here, we focused on the function of Epac in the heart. Accumulating evidence has revealed that both Epac1 and Epac2 play important roles in the structure and function of the heart under physiological and pathological conditions. Accordingly, developing the ability to regulate cAMP-mediated signaling through Epac may lead to remarkable new therapies for the treatment of cardiac diseases.


Assuntos
Arritmias Cardíacas/patologia , Cardiomegalia/patologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insuficiência Cardíaca/patologia , Miocárdio/patologia , Animais , Apoptose , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , AMP Cíclico/metabolismo , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/análise , Fatores de Troca do Nucleotídeo Guanina/genética , Coração/fisiologia , Coração/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Contração Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
20.
Minerva Urol Nefrol ; 69(2): 195-200, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26633552

RESUMO

BACKGROUND: Adipocytokines are associated with the pathophysiology of type 2 diabetes (T2DM). METHODS: We analyzed the relationship between levels of the plasma C1q/tumor necrosis factor-related protein 9 (CTRP9) and other adipocytokines or the endothelial function in patients with T2DM, and analyzed their trending manner. RESULTS: CTRP9 was detected in plasma from 14 out of a total of 28 patients. The values were not normally distributed. In comparing between groups in which CTRP9 was or was not detected, there were statistically significant differences in the high molecular weight adiponectin (HAN) and the urinary albumin/creatinine ratio (ACR). This indicates that both CTRP9 and HAN reflect the pathophysiology of renal involvement in T2DM. HAN correlated with Body Mass Index, ACR, and homeostasis model assessment of insulin resistance. However, CTRP9 did not correlate with HAN or any other parameters. CONCLUSIONS: CTRP9 independently trends in a different manner from HAN, and may reflect diabetic renal vascular risk in association with atherosclerosis and abnormal glucose metabolism besides of impaired vaso-relaxation in patients with T2DM.


Assuntos
Adiponectina/sangue , Diabetes Mellitus Tipo 2/sangue , Angiopatias Diabéticas/sangue , Nefropatias Diabéticas/sangue , Glicoproteínas/sangue , Idoso , Biomarcadores/sangue , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Masculino , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA