Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 359(6378): 935-939, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29472486

RESUMO

Bioluminescence is a natural light source based on luciferase catalysis of its substrate luciferin. We performed directed evolution on firefly luciferase using a red-shifted and highly deliverable luciferin analog to establish AkaBLI, an all-engineered bioluminescence in vivo imaging system. AkaBLI produced emissions in vivo that were brighter by a factor of 100 to 1000 than conventional systems, allowing noninvasive visualization of single cells deep inside freely moving animals. Single tumorigenic cells trapped in the mouse lung vasculature could be visualized. In the mouse brain, genetic labeling with neural activity sensors allowed tracking of small clusters of hippocampal neurons activated by novel environments. In a marmoset, we recorded video-rate bioluminescence from neurons in the striatum, a deep brain area, for more than 1 year. AkaBLI is therefore a bioengineered light source to spur unprecedented scientific, medical, and industrial applications.


Assuntos
Luciferases de Vaga-Lume/química , Medições Luminescentes/métodos , Neurônios/citologia , Análise de Célula Única/métodos , Animais , Benzotiazóis/química , Callithrix , Carcinogênese/química , Carcinogênese/patologia , Corpo Estriado/química , Corpo Estriado/citologia , Evolução Molecular Direcionada , Hipocampo/química , Luciferases de Vaga-Lume/genética , Pulmão/irrigação sanguínea , Camundongos , Movimento , Neurônios/química , Engenharia de Proteínas , Gravação em Vídeo
2.
Cell Struct Funct ; 32(1): 9-15, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17314458

RESUMO

Although the consequences of Ras activation have been studied extensively in the context of oncogenesis, its regulation in physiological modes of signal transduction is not well understood. A fluorescent indicator, Raichu-Ras, was fused to the C-terminal hypervariable regions of H-Ras and K-Ras to create indicators for Ras activation within caveolae/rafts (Raichu-tH) and non-raft domains (Raichu-tK) of the plasma membrane, respectively. Raichu-tH was also found abundantly in endomembranes. To monitor Ras activation with high spatial resolution, it is imperative to observe sectioned images of the signals. We have developed a wide-field fluorescence microscope equipped with a digital micromirror device (DMD) to acquire optically sectioned images using fringe projection. This system provides reliable signals from fluorescence resonance energy transfer (FRET) between cyan and yellow mutants of green fluorescent protein. We have used this system to demonstrate that, upon stimulation with growth factors, the two indicators are activated in spatially and temporally unique patterns.


Assuntos
Cavéolas/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas ras/metabolismo , Animais , Células COS , Cavéolas/efeitos dos fármacos , Chlorocebus aethiops , Fator de Crescimento Epidérmico/farmacologia , Microdomínios da Membrana/efeitos dos fármacos
3.
Sci STKE ; 2002(125): pl4, 2002 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-11917155

RESUMO

Dual-excitation ratiometric dyes are excited alternately at two different wavelengths, but the emission is collected at a single fixed wavelength. Therefore, the pair of intensity measurements must be collected sequentially. Ratiometric-pericam is a fluorescent Ca(2+) indicator based on a chimeric fusion protein of circularly permuted green fluorescent protein and calmodulin. Upon binding to calcium, its excitation peak shifts from 415 nm to 494 nm. Ca(2+) imaging using ratiometric-pericam was thought to be inadequate to follow very fast Ca(2+) dynamics or Ca(2+) changes in highly motile cell samples; however, we describe a technique that allows high spatial and time resolution of images acquired with ratiometric-pericam. To obtain confocal images of Ca(2+) using ratiometric-pericam, we established a system in which two laser beams (excitation 408 nm and 488 nm) are alternated on every scanning line under the control of two acousto-optic tunable filters. This system increases the rate at which ratio measurements are done to 200 Hz, and provides confocal images at 1 to 10 Hz depending on the image size. The ratio images are free from noise caused by the fluctuation of laser power, because the system is equipped with a violet laser diode (408 nm) and a diode-pumped solid-state laser (488 nm), both of which are stable. We visualized the dynamic propagation of Ca(2+) waves from the cytosol to the nucleus and changes in Ca(2+) concentrations in motile mitochondria of HeLa cells. We demonstrate that this new confocal imaging system expands the range of potential applications of ratiometric-pericam and other dual-excitation ratiometric indicators.


Assuntos
Cálcio/metabolismo , Proteínas Luminescentes/análise , Microscopia Confocal/métodos , Núcleo Celular/metabolismo , Citosol/metabolismo , Difusão , Corantes Fluorescentes/análise , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Indicadores e Reagentes/análise , Microscopia Confocal/instrumentação , Mitocôndrias/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA