Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pituitary ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38954291

RESUMO

PURPOSE: We previously showed the clinical characteristics of acromegaly with a paradoxical growth hormone (GH) response to oral glucose or thyrotropin-releasing hormone. However, the clinical characteristics of acromegaly with an increased GH response to luteinizing hormone-releasing hormone (LHRH responders) remain unclear. The aim of the present study was to evaluate the clinical characteristics, especially gonadotroph-related characteristics of LHRH responders in acromegaly. METHODS: The clinical characteristics of 33 LHRH responders and 81 LHRH nonresponders were compared. RESULTS: No differences in age, sex or basal serum levels of GH, insulin-like growth factor-1 (IGF-1), and gonadotropin were observed between the two groups. Steroidogenic factor 1 (SF-1), gonadotropin-releasing hormone receptor (GnRHR), and LH expression was more frequently observed in LHRH responders (P < 0.05). In addition, a greater increased rate of GH after LHRH loading, and the proportion of GnRHR and gonadotropin expression was observed in pituitary tumor with SF-1 expression than that without the expression (P < 0.01). LHRH responders showed a greater GH decrease in the octreotide test and a greater IGF-1 decrease after first-generation somatostatin ligand than LHRH nonresponders (P < 0.05). Furthermore, the proportion of hypointense pituitary tumors on T2-weighted magnetic resonance imaging and tumors with densely granulated type was higher in LHRH responders than in LHRH nonresponders, respectively (P < 0.05). No difference between the two groups was observed in either somatostatin receptor 2 or 5 expression. CONCLUSIONS: The increased GH response to LHRH is associated with the gonadotroph-related characteristics. This response may reflect the biological characteristics of somatotroph tumors.

2.
Nat Commun ; 14(1): 7319, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951979

RESUMO

Adiposity varies among individuals with the influence of diverse physiological, pathological, environmental, hormonal, and genetic factors, but a unified molecular basis remains elusive. Here, we identify HSP47, a collagen-specific chaperone, as a key determinant of body adiposity. HSP47 expression is abundant in adipose tissue; increased with feeding, overeating, and obesity; decreased with fasting, exercise, calorie restriction, bariatric surgery, and cachexia; and correlated with fat mass, BMI, waist, and hip circumferences. Insulin and glucocorticoids, respectively, up- and down-regulate HSP47 expression. In humans, the increase of HSP47 gene expression by its intron or synonymous variants is associated with higher body adiposity traits. In mice, the adipose-specific knockout or pharmacological inhibition of HSP47 leads to lower body adiposity compared to the control. Mechanistically, HSP47 promotes collagen dynamics in the folding, secretion, and interaction with integrin, which activates FAK signaling and preserves PPARγ protein from proteasomal degradation, partly related to MDM2. The study highlights the significance of HSP47 in determining the amount of body fat individually and under various circumstances.


Assuntos
Adiposidade , Proteínas de Choque Térmico HSP47 , Animais , Humanos , Camundongos , Colágeno/metabolismo , Proteínas de Choque Térmico HSP47/genética , Chaperonas Moleculares/metabolismo , Obesidade/genética
3.
JCI Insight ; 7(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35862218

RESUMO

Inactivating mutations of ARMC5 are responsible for the development of bilateral macronodular adrenal hyperplasia (BMAH). Although ARMC5 inhibits adrenocortical tumor growth and is considered a tumor-suppressor gene, its molecular function is poorly understood. In this study, through biochemical purification using SREBF (SREBP) as bait, we identified the interaction between SREBF and ARMC5 through its Armadillo repeat. We also found that ARMC5 interacted with CUL3 through its BTB domain and underwent self-ubiquitination. ARMC5 colocalized with SREBF1 in the cytosol and induced proteasome-dependent degradation of full-length SREBF through ubiquitination. Introduction of missense mutations in Armadillo repeat of ARMC5 attenuated the interaction between SREBF, and introduction of mutations found in BMAH completely abolished its ability to degrade full-length SREBF. In H295R adrenocortical cells, silencing of ARMC5 increased full-length SREBFs and upregulated SREBF2 target genes. siARMC5-mediated cell growth was abrogated by simultaneous knockdown of SREBF2 in H295R cells. Our results demonstrate that ARMC5 was a substrate adaptor protein between full-length SREBF and CUL3-based E3 ligase, and they suggest the involvement of the SREBF pathway in the development of BMAH.


Assuntos
Mutação em Linhagem Germinativa , Proteínas Supressoras de Tumor , Proteínas do Domínio Armadillo/genética , Mutação , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
4.
Metabolism ; 133: 155236, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688210

RESUMO

BACKGROUND: COVID-19 can cause multiple organ damages as well as metabolic abnormalities such as hyperglycemia, insulin resistance, and new onset of diabetes. The insulin/IGF signaling pathway plays an important role in regulating energy metabolism and cell survival, but little is known about the impact of SARS-CoV-2 infection. The aim of this work was to investigate whether SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the host cell/tissue, and if so, the potential mechanism and association with COVID-19 pathology. METHODS: To determine the impact of SARS-CoV-2 on insulin/IGF signaling pathway, we utilized transcriptome datasets of SARS-CoV-2 infected cells and tissues from public repositories for a wide range of high-throughput gene expression data: autopsy lungs from COVID-19 patients compared to the control from non-COVID-19 patients; lungs from a human ACE2 transgenic mouse infected with SARS-CoV-2 compared to the control infected with mock; human pluripotent stem cell (hPSC)-derived liver organoids infected with SARS-CoV-2; adipose tissues from a mouse model of COVID-19 overexpressing human ACE2 via adeno-associated virus serotype 9 (AAV9) compared to the control GFP after SARS-CoV-2 infection; iPS-derived human pancreatic cells infected with SARS-CoV-2 compared to the mock control. Gain and loss of IRF1 function models were established in HEK293T and/or Calu3 cells to evaluate the impact on insulin signaling. To understand the mechanistic regulation and relevance with COVID-19 risk factors, such as older age, male sex, obesity, and diabetes, several transcriptomes of human respiratory, metabolic, and endocrine cells and tissue were analyzed. To estimate the association with COVID-19 severity, whole blood transcriptomes of critical patients with COVID-19 compared to those of hospitalized noncritical patients with COVID-19. RESULTS: We found that SARS-CoV-2 infection impaired insulin/IGF signaling pathway genes, such as IRS, PI3K, AKT, mTOR, and MAPK, in the host lung, liver, adipose tissue, and pancreatic cells. The impairments were attributed to interferon regulatory factor 1 (IRF1), and its gene expression was highly relevant to risk factors for severe COVID-19; increased with aging in the lung, specifically in men; augmented by obese and diabetic conditions in liver, adipose tissue, and pancreatic islets. IRF1 activation was significantly associated with the impaired insulin signaling in human cells. IRF1 intron variant rs17622656-A, which was previously reported to be associated with COVID-19 prevalence, increased the IRF1 gene expression in human tissue and was frequently found in American and European population. Critical patients with COVID-19 exhibited higher IRF1 and lower insulin/IGF signaling pathway genes in the whole blood compared to hospitalized noncritical patients. Hormonal interventions, such as dihydrotestosterone and dexamethasone, ameliorated the pathological traits in SARS-CoV-2 infectable cells and tissues. CONCLUSIONS: The present study provides the first scientific evidence that SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in respiratory, metabolic, and endocrine cells and tissues. This feature likely contributes to COVID-19 severity with cell/tissue damage and metabolic abnormalities, which may be exacerbated in older, male, obese, or diabetic patients.


Assuntos
COVID-19 , Insulina , Fator Regulador 1 de Interferon , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , Células HEK293 , Humanos , Insulina/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo , Obesidade/patologia , SARS-CoV-2 , Transdução de Sinais
5.
J Biol Chem ; 298(4): 101748, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189145

RESUMO

Adipose tissue dynamically changes its mass in response to external nutritional status, which plays an important role in maintaining the lipid homeostasis. Physiologically, feeding events are associated with the expansion of adipose tissue, but little is known about the detailed molecular mechanisms of this expansion. Here, using comprehensive transcriptome analysis, we found that levels of transforming growth factor ß1 (TGF-ß1), a key regulator of extracellular matrix (ECM) remodeling, were increased in adipose tissue under feeding conditions and associated with the lipogenic pathway. In addition, TGF-ß receptors are highly expressed in adipose tissue, and pharmacological inhibition of TGF-ß1 reduced adipose tissue mass and caused ectopic lipid accumulation in the liver. This reduced fat mass was associated with decreased gene expression in ECM remodeling and lipogenesis. Furthermore, similar results were observed in the adipose tissue of SMAD family member 3 knockout mice or upon systemic TGF-ß neutralization, with significant reductions in both ECM remodeling and lipogenesis-related genes. Mechanistically, we found that insulin-induced TGF-ß1 and cell-autonomous action remodels the ECM of adipocytes, which controls the downstream focal adhesion kinase-AKT signaling cascades and enhances the lipogenic pathway. Of note, destruction of collagens or matrix metalloproteinase/a disintegrin and metalloprotease activities, critical components of ECM remodeling, blocked TGF-ß1-mediated focal adhesion kinase-AKT signaling and the lipogenic pathway. Taken together, this study identifies a previously unknown lipogenic role of TGF-ß1 by which adipocytes can expand to adapt to physiological feeding events.


Assuntos
Matriz Extracelular , Lipogênese , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Animais , Matriz Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Metabolismo dos Lipídeos , Lipogênese/genética , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
6.
J Endocrinol ; 252(2): 81-90, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34755678

RESUMO

Primary aldosteronism (PA) is caused by autonomous overproduction of aldosterone, which induces organ damage directly via activation of the mineralocorticoid receptor (MR); however, no specific or sensitive biomarkers are able to reflect MR activity. Recently, it is found that urinary extracellular vesicles (uEVs) are secreted by multiple cell types in the kidney and are an enriched source of kidney-specific proteins. Here, we evaluate sodium transporters in uEVs as candidates of biomarkers of MR activity in the clinical setting. Sixteen patients were examined to determine their plasma aldosterone concentration (PAC) and renin activity, and their morning urine was collected. The protein levels of two sodium transporters in uEVs, γ-epithelial sodium channel (γENaC) and thiazide-sensitive sodium chloride cotransporter (NCC), were quantified by Western blot analysis, and their clinical correlation with PAC was determined. Consequently, we found PAC was significantly correlated with the γENaC protein level adjusted by the CD9 protein level in uEVs (correlation coefficient = 0.71). PAC was also correlated with the NCC protein level adjusted by the CD9 protein level in uEVs (correlation coefficient = 0.61). In two PA patients, treatment with an MR antagonist or adrenalectomy reduced γENaC/CD9 in uEVs. In conclusion, γENaC/CD9 in uEVs is a valuable biomarker of MR activity in PA patients and may be a useful biomarker for other MR-associated diseases.


Assuntos
Canais Epiteliais de Sódio/urina , Vesículas Extracelulares/metabolismo , Hiperaldosteronismo/diagnóstico , Receptores de Mineralocorticoides/fisiologia , Tetraspanina 29/urina , Adulto , Idoso , Aldosterona/metabolismo , Biomarcadores/análise , Biomarcadores/urina , Estudos de Coortes , Canais Epiteliais de Sódio/análise , Feminino , Células HEK293 , Humanos , Hiperaldosteronismo/urina , Rim/metabolismo , Testes de Função Renal/métodos , Masculino , Pessoa de Meia-Idade , Tetraspanina 29/análise
7.
Biochem Biophys Res Commun ; 585: 155-161, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34801935

RESUMO

Glutamine is the most abundant amino acid in the body, and adipose tissue is one of the glutamine-producing organs. Glutamine has important and unique metabolic functions; however, its effects in adipocytes are still unclear. 3T3-L1 adipocytes produced and secreted glutamine dependent on glutamine synthetase, but preadipocytes did not. The inhibition of glutamine synthetase by l-methionine sulfoximine (MSO) impaired the differentiation of preadipocytes to mature adipocytes, and this inhibitory effect of MSO was rescued by exogenous glutamine supplementation. Glutamine concentrations were low, and Atgl gene expression was high in epididymal white adipose tissues of fasting mice in vivo. In 3T3-L1 adipocytes, glutamine deprivation induced Atgl expression and increased glycerol concentration in culture medium. Atgl expression is regulated by FoxO1, and glutamine deprivation reduced FoxO1 phosphorylation (Ser256), indicating the activation of FoxO1. These results demonstrate that glutamine is necessary for the differentiation of preadipocytes and regulates lipolysis through FoxO1 in mature adipocytes.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular/fisiologia , Glutamina/deficiência , Lipólise/fisiologia , Células 3T3-L1 , Adipócitos/citologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Western Blotting , Diferenciação Celular/genética , Células Cultivadas , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Lipase/genética , Lipase/metabolismo , Lipólise/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Exp Clin Endocrinol Diabetes ; 128(8): 548-555, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30536265

RESUMO

Eicosapentaenoic acid (EPA) is an omega-3 fatty acid with anti-inflammatory effects. To determine the effects of EPA on metabolic pathways in obese adipose tissues and liver, mice were fed normal chow diet (NCD), high-fat diet (HFD), or 3% EPA-containing high fat diet (HFD+EPA) for 8 weeks. Metabolomic analysis was performed using epididymal adipose tissues (epi WAT) and liver. Metabolites that were specifically elevated in HFD+EPA, were assessed for their anti-inflammatory properties using RAW264.7 macrophage cells. Body and adipose tissue weights were significantly higher in HFD than NCD, and lower in HFD+EPA than HFD. Plasma insulin levels were significantly higher in HFD than NCD, and lower in HFD+EPA compared with HFD. Plasma monocyte chemotactic protein-1 (MCP-1) levels were higher in HFD than NCD, and tended to be lower in HFD+EPA than HFD. The levels of intermediate metabolites in the glycolytic pathways were lower in HFD compared with NCD and HFD+EPA in both epi WAT and liver, while intermediate metabolites of the TCA cycles were elevated in HFD and HFD+EPA compared with NCD in epi WAT. Among the metabolites in epi WAT, the levels of thiaproline, phenaceturic acid, and pipecolic acid were specifically elevated in HFD+EPA, but not in HFD or NCD. Treatment of RAW264.7 cells with thiaproline significantly ameliorated LPS-induced iNOS expression, while pipecolic acid inhibited LPS-induced IL-1ß expression. These results suggest that EPA normalizes glycolytic pathway intermediates in both epi WAT and liver, and induces metabolites with anti-inflammatory properties.


Assuntos
Ácido Eicosapentaenoico/farmacologia , Metaboloma/efeitos dos fármacos , Obesidade/dietoterapia , Obesidade/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Suplementos Nutricionais , Ácido Eicosapentaenoico/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Células RAW 264.7
9.
Sci Rep ; 7(1): 4560, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676689

RESUMO

Eicosapentaenoic acid (EPA) is an omega-3 fatty acid with immunomodulatory and anti-inflammatory effects. Beyond its direct effects, the metabolic products of EPA also regulate various immune responses. Animal experiments demonstrated that EPA reduces adipose inflammation in high fat diet-induced obese mouse. However, the effects of EPA on infiltrated immune cell populations in adipose tissue and underlying mechanisms remain to be elucidated. We performed flow cytometry of stromal vascular fraction of epididymal adipose tissues from C57BL/6J and ob/ob mice fed normal chow mixed with or without 5% EPA. The numbers of hematopoietic cells, including Tregs, were higher in both C57BL/6J and ob/ob mice fed EPA diet compared with control diet. EPA enhanced the induction of Tregs in co-cultures of adipose tissue macrophages (ATMs) and naïve T cells. Among EPA metabolites, 5-HEPE was the most potent inducer of Tregs. GPR119 and GPR120 are receptors for 5-HEPE and EPA, respectively, and antagonist of GPR119 blocked Treg induction by EPA in the presence of ATMs. Alox5 gene encodes 5-lipoxygenase enzyme catalyzing EPA into 5-HEPE, and inhibitor of 5-lipoxygenase down-regulated EPA-mediated induction of adipose tissue Tregs in ob/ob mice. The study findings demonstrated that both EPA and 5-HEPE enhance ATM-mediated Treg induction.


Assuntos
Comunicação Celular/efeitos dos fármacos , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Comunicação Celular/imunologia , Eosinófilos/metabolismo , Eosinófilos/patologia , Imunofenotipagem , Contagem de Linfócitos , Macrófagos/metabolismo , Masculino , Camundongos , Linfócitos T Reguladores/metabolismo
10.
Horm Metab Res ; 49(5): 380-387, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28222464

RESUMO

The physiological function of DPP-4 in proteolytic inactivation of incretins has been well established, however, there is limited information on the expression and the significance of DPP-4 in white adipose tissue with regard to obesity. The objective of the work was to reveal the expression and regulation of DPP-4 in adipocytes and compare the expression and activity of DPP-4 in white adipose tissue and several other organs such as the liver, muscle and kidney. We also investigated the gene expression levels of DPP-4 substrate chemokines, and their receptors in white adipose tissue. DPP-4 was mainly expressed in stromal vascular fraction (SVF), and downregulated in adipose tissue of ob/ob compared with C57BL6/J mice. Mimetic conditions of obese fat in vitro showed that differentiation of mouse primary preadipocytes into adipocytes was associated with marked downregulation of DPP-4 expression. Treatment with TNF-α or ROS even decreased DPP-4 expression in mouse primary adipocytes. Various DPP-4 substrate chemokines were expressed in white adipose tissue and regulated by obesity. The expression of receptors for DPP-4 substrate chemokines was markedly high and tightly regulated by obesity in white adipose tissue. Expression of DPP-4 was reduced in adipose tissues of ob/ob mice. Actions of several substrate chemokines might be potentiated by downregulation of DPP-4, synergistically with upregulation of chemokines and their receptors in adipose tissues of obese mice.


Assuntos
Quimiocinas/metabolismo , Dipeptidil Peptidase 4/metabolismo , Receptores de Quimiocinas/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Dipeptidil Peptidase 4/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Quimiocinas/genética , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
11.
Endocr J ; 63(6): 545-54, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025408

RESUMO

Cushing's disease (CD) and subclinical Cushing's disease (subCD) are both diseases caused by adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas. However, ACTH autonomy in subCD is weaker than in CD and there are no Cushingoid features in subCD. The differences of molecular mechanisms in ACTH autonomy between CD and subCD have not yet been reported. Therefore, we aimed to investigate the differences in molecular mechanisms of ACTH-secretion autonomy between CD and subCD. The study included 23 patients [7 CD, 6 subCD, and 10 non-functioning pituitary tumors (NFTs)] who underwent transsphenoidal surgery at the Osaka University Hospital between December 2009 and October 2013. Using quantitative real-time PCR, various ACTH-related gene expressions in tumor tissues from CD, subCD, and NFT were measured such as pro-opiomelanocortin (POMC), POMC transcription factor (Tpit, Pitx1, NeuroD1, and Nur77), POMC peptide processing enzymes (prohormone convertase: PC1/3 and PC2), and ACTH secretion-related factors (corticotropin-releasing hormone receptor 1: CRHR1 and glucocorticoid receptor α: GRα). Only Nur77 mRNA levels were significantly higher in CD than in subCD. Furthermore, we stained 6 CD and 6 subCD with anti-Nur77 antibody. All tumor samples from CD had Nur77 protein positive cells. On the other hand, Nur77 protein was expressed in only one tumor sample from subCD. This sample showed high expression of Nur77 mRNA. Nur77 is an important to regulate POMC transcription and negative-feedback by glucocorticoids. Nur77 gene expression levels might involve different autonomy of ACTH production between CD and subCD.


Assuntos
Adenoma Hipofisário Secretor de ACT/genética , Adenoma/genética , Hormônio Adrenocorticotrópico/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Hipersecreção Hipofisária de ACTH/genética , Adenoma Hipofisário Secretor de ACT/metabolismo , Adenoma/metabolismo , Adulto , Idoso , Doenças Assintomáticas , Estudos de Casos e Controles , Retroalimentação Fisiológica , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Hipersecreção Hipofisária de ACTH/metabolismo , Via Secretória/genética , Adulto Jovem
12.
Sci Rep ; 5: 16801, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26582486

RESUMO

Numerous regulatory T cells (Tregs) are present in adipose tissues compared with other lymphoid or non-lymphoid tissues. Adipose Tregs regulate inflammatory state and insulin sensitivity. However, the mechanism that maintains Tregs in adipose tissue remains unclear. Here, we revealed the contribution of adipose tissue macrophages (ATMs) to the induction and proliferation of adipose Tregs. ATMs isolated from mice under steady state conditions induced Tregs with high expression of PPARγ compared with splenic dendritic cells in vitro. Furthermore, ATMs from obese mice prompted the differentiation of PPARγ low Tregs. Adoptive transfer of ATMs induced differentiation and proliferation of Tregs, whereas depletion of ATMs by clodronate-liposome resulted in reduction of adipose Tregs, in vivo. Deficiency of anti-inflammatory adipocytokine, Adipoq, resulted in small proportions of ATMs and adipose Tregs without alteration of other immune cells in vivo. Therefore, these data suggest that the abundance of Tregs in adipose tissue could be partly attributed to the ability of ATMs to induce PPARγ-expressing Tregs.


Assuntos
Tecido Adiposo/citologia , Fatores de Transcrição Forkhead/metabolismo , Macrófagos/metabolismo , PPAR gama/metabolismo , Adiponectina/deficiência , Adiponectina/metabolismo , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Clodrônico/farmacologia , Dieta Hiperlipídica , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Linfócitos T Reguladores/metabolismo
13.
J Biol Chem ; 290(12): 7443-51, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25605713

RESUMO

We previously identified a novel gene encoding Favine/CCDC3 (NCBI protein entry NP_083080), a possible secretory factor, the mRNA of which is highly expressed in adipose tissue and the aorta. The Favine mRNA levels are increased in the course of differentiation of rat primary adipocytes and are more elevated in the adipose tissue of genetically obese and diet-induced obese mice than in lean mice. However, its biological function has not yet been elucidated until now. Here, we tested the hypothesis that Favine is involved in lipid metabolism in adipocytes. We found that overexpression of Favine promoted 3T3-L1 adipocyte differentiation. To further investigate the function of Favine in vivo, we generated Favine knock-out (KO) mice. Favine KO mice exhibited a lean phenotype as they aged. The weights of white adipose tissue and liver were less, and adipocyte size was smaller in Favine KO mice compared with wild-type littermates (WT). Expression levels of lipogenic genes, such as fatty-acid synthase (FAS), acetyl-CoA carboxylase α (ACC1), and diacylglycerol O-acyltransferase-2 (Dgat2), were decreased in adipose tissue of Favine KO mice. In 1-year-old mice, Favine deficiency decreased the number of inflammatory cells in white adipose tissue and diminished hepatic steatosis. In vitro, deficiency of Favine attenuated differentiation of primary adipocytes. Taken together, these data demonstrate that Favine has adipogenic and lipogenic effects on adipocytes.


Assuntos
Metabolismo dos Lipídeos , Proteínas/fisiologia , Células 3T3-L1 , Adenoviridae/genética , Adipócitos/citologia , Adipócitos/metabolismo , Adiposidade , Animais , Sequência de Bases , Western Blotting , Diferenciação Celular , Primers do DNA , Fígado Gorduroso/prevenção & controle , Camundongos , Camundongos Knockout , Proteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Retroviridae/genética
14.
Endocr J ; 61(3): 231-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24304925

RESUMO

Growth hormone (GH) and insulin-like growth factor-I (IGF-I) play important roles in maintaining bone metabolism and bone mineral density (BMD) in adulthood, in addition to stimulating longitudinal bone growth in childhood. However, information on the effect of GH excess on bone metabolism and BMD is incomplete and requires further analysis. The aim of this study is to clarify the effect of rapid decline in GH levels after transsphenoidal surgery (TSS) on bone metabolism in acromegalic patients. In this prospective study, 22 patients (11 males and 11 females) with active acromegaly underwent TSS. Bone formation marker (serum bone alkaline phosphatase: BAP), bone resorption marker (urinary type I collagen cross-linked N-telopeptide: urinary NTx) and BMD were measured before and at 3 and 12 months after TSS. BAP was significantly decreased at 12 months after TSS, but not at 3 months. Urinary NTx was significantly decreased at 3 and 12 months after TSS. BMD did not change after TSS. In conclusion, the rapid fall in GH level after TSS had no effect on BMD for up to 12 months after TSS despite the decrease in markers of bone formation and resorption.


Assuntos
Acromegalia/cirurgia , Densidade Óssea , Osso e Ossos/metabolismo , Hormônio do Crescimento Humano/metabolismo , Acromegalia/sangue , Acromegalia/metabolismo , Acromegalia/urina , Adulto , Idoso , Fosfatase Alcalina/sangue , Remodelação Óssea , Reabsorção Óssea , Colágeno Tipo I , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos , Estudos Prospectivos
15.
Obesity (Silver Spring) ; 21(4): 731-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23712976

RESUMO

OBJECTIVE: White adipose tissue (WAT) of obesity is in the state of inflammation with progressive infiltration by macrophages and overproduction of reactive oxygen species (ROS), which can induce WAT dysfunction, including insulin resistance and adipocytokine dysregulation. Activating transcription factor 2 (ATF2) is a member of the ATF/cAMP response element binding family of transcription factors and known to be activated by cellular stressors, such as inflammatory cytokines, lipopolysaccharide (LPS), and ROS. DESIGN AND METHODS, RESULTS: Here, we show that ATF2 protein was significantly more induced in WAT of ob/ob mice compared with C57BL/6J mice. Total and phosphorylated ATF2 were highly expressed in infiltrated macrophages. Furthermore, flow cytometry analysis demonstrated that ATF2 expression was high in CD11c-positive/CD301-negative M1 macrophages. Phosphorylation of ATF2 was induced by treatment with either H2 O2 or LPS in RAW264.7 macrophage cells, and suppression of ATF2 expression by small-interfering RNA induced mRNA levels of ATF3, an anti-inflammatory molecule in macrophages in WAT. CONCLUSIONS: These results suggest that ATF2 is an important transcriptional factor relating to inflammation through the suppression of ATF3 in M1 macrophages of WAT.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Tecido Adiposo Branco/fisiopatologia , Regulação da Expressão Gênica , Macrófagos/metabolismo , Obesidade/fisiopatologia , Fator 2 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/antagonistas & inibidores , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Inflamação/fisiopatologia , Resistência à Insulina , Lipopolissacarídeos/metabolismo , Fígado/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
16.
PLoS One ; 8(2): e56071, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23424645

RESUMO

Adiponectin is exclusively expressed in adipose tissues and exhibits protective effects against cardiovascular and metabolic diseases. It enhances AMP-activated kinase (AMPK) and peroxisome proliferator-activated receptor α (PPARα) signaling in the liver and skeletal muscles, however, its signaling pathways in macrophages remain to be elucidated. Here, we show that adiponectin upregulated the expression of vascular endothelial growth factor (VEGF)-C, and induced phosphorylation of extracellular signal-regulated kinase (ERK) in macrophages. Inhibition of Syk abrogated adiponectin-induced VEGF-C expression and ERK phosphorylation. Furthermore, inhibition of ERK blocked the induction of VEGF-C gene. Inhibition of Syk, but not that of ERK, abrogated adiponectin-induced expression of cyclooxygenase (COX)-2, tissue inhibitor of metalloproteinase (TIMP)-1, and interleukin (IL)-6. These results indicate that adiponectin regulates VEGF-C expression via Syk-ERK pathway in macrophages.


Assuntos
Adiponectina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator C de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Quinase Syk , Ativação Transcricional/efeitos dos fármacos
17.
Am J Physiol Endocrinol Metab ; 296(6): E1326-34, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19366877

RESUMO

Oxidative stress plays an important role in obesity-related metabolic diseases. Glutathione peroxidase (GPX) is an antioxidant enzyme downregulated in adipose tissue of obese mice. However, the role of GPX in adipocytes remains elusive. The objective of this study was to clarify the pathophysiological changes in GPX activity and glutathione metabolism and their roles in the pathogenesis of insulin resistance in adipocytes. To achieve this goal, we measured cellular GPX activity, glutathione (GSH) contents, GSH/GSSG ratio, and mRNA expression of gamma-glutamylcysteine synthetase (gamma-GCS), a rate-limiting enzyme for de novo GSH synthesis, in adipose tissue of control and ob/ob mice and in 3T3-L1 adipocytes treated with insulin, H(2)O(2), free fatty acid (FFA), or TNFalpha. Furthermore, we investigated the effects of GPX inhibition with a specific GPX inhibitor or RNA interference against GPX, H(2)O(2), and reduced GSH on insulin signaling in 3T3-L1 adipocytes. ob/ob Mice showed not only a decrease in cellular activity of GPXs (GPX1, -4, and -7) but also an increase in gamma-GCS expression, resulting in increased GSH contents in adipose tissue. These alterations in glutathione metabolism were also observed during differentiation of 3T3-L1 cells and their exposure to insulin, FFA, or H(2)O(2). Inhibition of GPX activity, addition of GSH, and H(2)O(2) resulted in impaired insulin signaling in 3T3-L1 adipocytes. These results suggest that decreased GPX activity and increased gamma-GCS expression lead to overaccumulation of GSH, which might be involved in the pathogenesis of insulin resistance in obesity.


Assuntos
Adipócitos/enzimologia , Glutationa/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Obesidade/metabolismo , Células 3T3-L1 , Animais , Regulação para Baixo/fisiologia , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/fisiopatologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
18.
Biochem Biophys Res Commun ; 379(2): 547-52, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19116132

RESUMO

Obesity is associated with insulin resistance and a mild chronic inflammation in adipose tissues. Recent studies suggested that GM3 ganglioside mediates dysfunction in insulin signaling. However, it has not been determined the ganglioside profiling in adipose tissues of obese animals. Here, we for the first time examined semi-quantitative ganglioside profiles in the adipose tissues of high fat- and high sucrose-induced obese, diabetic C57BL/6J mice by TLC and HPLC/mass spectrometry. In control adipose tissues GM3 dominated with traces of GM1 and GD1a; obesity led to a dramatic increase in GM2, GM1, and GD1a with the GM3 content unchanged. Similar results were obtained in KK and KKAy mice. Adipocytes separated from stromal vascular cells including macrophages contained more of those gangliosides in KKAy mice than in KK mice. These results underscore those gangliosides in the pathophysiology of obesity-related diseases.


Assuntos
Tecido Adiposo/metabolismo , Gangliosídeos/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/química , Animais , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Gangliosídeo G(M2)/análise , Gangliosídeo G(M2)/genética , Gangliosídeo G(M2)/metabolismo , Gangliosídeo G(M3)/análise , Gangliosídeo G(M3)/genética , Gangliosídeo G(M3)/metabolismo , Gangliosídeos/análise , Gangliosídeos/genética , Expressão Gênica , Macrófagos/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos , N-Acetilgalactosaminiltransferases/biossíntese , Obesidade/complicações , RNA Mensageiro/biossíntese
19.
Biochem Biophys Res Commun ; 379(2): 288-92, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19101507

RESUMO

Rho GTPase regulates actin cytoskeleton organization and assembly in many cell types, however, its significance in adipose tissue is not well characterized. Here, we demonstrate high RhoA activity in adipose tissues of C57BL/6J mice. To determine the effect of RhoA activation on 3T3-L1 cells, stable cell lines overexpressing G14VRhoA fused to destabilizing domain of FKBP12 (DD-G14VRhoA-L1) were generated. Treatment of DD-G14VRhoA-L1 cells with Shield1 following their differentiation into adipocytes, resulted in the appearance of thick cortical actin filaments, and increased the mRNA expression levels of plasminogen activator inhibitor type-1 (PAI-1) and monocyte chemoattractant protein-1 (MCP-1). The induction of PAI-1 and MCP-1 was inhibited by treatment with a Rho-associated kinase (ROCK) inhibitor, Y-27632. In 3T3-L1 adipocytes, tumor necrosis factor-alpha activated RhoA and increased mRNA expression of PAI-1 and MCP-1, and their treatment with Y-27632 partially inhibited these changes. The results indicate that RhoA-ROCK pathway induces inflammatory cytokine expression in adipocytes.


Assuntos
Adipócitos/enzimologia , Citocinas/biossíntese , Proteína rhoA de Ligação ao GTP/metabolismo , Células 3T3 , Amidas/farmacologia , Animais , Quimiocina CCL2/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Serpina E2 , Serpinas/biossíntese , Fator de Necrose Tumoral alfa/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
20.
Biochem Biophys Res Commun ; 378(2): 186-91, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19026984

RESUMO

Adiponectin (APN) is a hormone released by adipose tissue with anti-inflammatory properties. The purpose of this study was to examine the therapeutic effects of systemic delivery of APN in murine arthritis model. Collagen-induced arthritis (CIA) was induced in male DBA1/J mice, and adenoviral vectors encoding human APN (Ad-APN) or beta-galactosidase (Ad-beta-gal) as control were injected either before or during arthritis progression. Systemic APN delivery at both time points significantly decreased clinical disease activity scores of CIA. In addition, APN treatment before arthritis progression significantly decreased histological scores of inflammation and cartilage damage, bone erosion, and mRNA levels of pro-inflammatory cytokines in the joints, without altering serum anti-collagen antibodies levels. Immunohistochemical staining showed significant inhibition of complement C1q and C3 deposition in the joints of Ad-APN infected CIA mice. These results provide novel evidence that systemic APN delivery prevents inflammation and joint destruction in murine arthritis model.


Assuntos
Artrite Experimental/terapia , Terapia Genética , Adenoviridae , Adiponectina/sangue , Adiponectina/genética , Animais , Anticorpos/sangue , Artrite Experimental/imunologia , Artrite Experimental/patologia , Osso e Ossos/imunologia , Colágeno/imunologia , Complemento C1q/metabolismo , Complemento C3/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos , Neutrófilos/imunologia , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA