Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene Ther ; 30(12): 812-825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37322133

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disease particularly characterised by degeneration of ventral motor neurons. Survival motor neuron (SMN) 1 gene mutations cause SMA, and gene addition strategies to replace the faulty SMN1 copy are a therapeutic option. We have developed a novel, codon-optimised hSMN1 transgene and produced integration-proficient and integration-deficient lentiviral vectors with cytomegalovirus (CMV), human synapsin (hSYN) or human phosphoglycerate kinase (hPGK) promoters to determine the optimal expression cassette configuration. Integrating, CMV-driven and codon-optimised hSMN1 lentiviral vectors resulted in the highest production of functional SMN protein in vitro. Integration-deficient lentiviral vectors also led to significant expression of the optimised transgene and are expected to be safer than integrating vectors. Lentiviral delivery in culture led to activation of the DNA damage response, in particular elevating levels of phosphorylated ataxia telangiectasia mutated (pATM) and γH2AX, but the optimised hSMN1 transgene showed some protective effects. Neonatal delivery of adeno-associated viral vector (AAV9) vector encoding the optimised transgene to the Smn2B/- mouse model of SMA resulted in a significant increase of SMN protein levels in liver and spinal cord. This work shows the potential of a novel codon-optimised hSMN1 transgene as a therapeutic strategy for SMA.


Assuntos
Infecções por Citomegalovirus , Atrofia Muscular Espinal , Proteína 1 de Sobrevivência do Neurônio Motor , Animais , Humanos , Recém-Nascido , Camundongos , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Modelos Animais de Doenças , DNA Complementar/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Fatores de Transcrição/genética , Transgenes
2.
Cytokine ; 159: 156011, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36067713

RESUMO

With the rising demand for improved COVID-19 disease monitoring and prognostic markers, studies have aimed to identify biomarkers using a range of screening methods. However, the selection of biomarkers for validation from large datasets may result in potentially important biomarkers being overlooked when datasets are considered in isolation. Here, we have utilized a meta-summary approach to investigate COVID-19 biomarker datasets to identify conserved biomarkers of COVID-19 severity. This approach identified a panel of 17 proteins that showed a consistent direction of change across two or more datasets. Furthermore, bioinformatics analysis of these proteins highlighted a range of enriched biological processes that include inflammatory responses and compromised integrity of physiological systems including cardiovascular, neurological, and metabolic. A panel of upstream regulators of the COVID-19 severity biomarkers were identified, including chemical compounds currently under investigation for COVID-19 treatment. One of the upstream regulators, interleukin 6 (IL6), was identified as a "master regulator" of the severity biomarkers. COVID-19 disease severity is intensified due to the extreme viral immunological reaction that results in increased inflammatory biomarkers and cytokine storm. Since IL6 is the primary stimulator of cytokines, it could be used independently as a biomarker in determining COVID-19 disease progression, in addition to a potential therapeutic approach targeting IL6. The array of upstream regulators of the severity biomarkers identified here serve as attractive candidates for the development of new therapeutic approaches to treating COVID-19. In addition, the findings from this study highlight COVID-19 severity biomarkers which represent promising, robust biomarkers for future validation studies for their use in defining and monitoring disease severity and patient prognosis.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Biomarcadores , COVID-19/diagnóstico , Biologia Computacional , Citocinas , Humanos , Interleucina-6 , Índice de Gravidade de Doença
3.
World Neurosurg ; 120: e902-e920, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30193963

RESUMO

BACKGROUND: Malignant infarction of the middle cerebral artery (MCI) is life threatening. It is associated with a mortality as high as 80%, and survival often at the expense of serious disability. Limited success of medical therapies has resulted in decompressive craniectomy (DC) being increasingly used as a treatment for MCI, although evidence of its efficacy is inconclusive. In this study, the efficacy of DC in improving survival, or survival free of severe disability, was assessed. METHODS: A meta-analysis was performed to approximate the efficacy of DC for treating MCI, considering age and time to surgery. A systematic literature review was conducted on Medline, Embase, and Cochrane library databases to August 1, 2018. Death and severe disability at 3, 6, 12, and 36 months follow-up were assessed, comparing best medical therapy with DC. RESULTS: 18 studies were eligible for inclusion and represented 987 individuals who received DC. Nine of these were randomized controlled trials (RCTs) (n = 374 DC). Early DC (<48 hours from onset of stroke) reduced mortality (odds ratio [OR] = 0.18, 95% confidence interval [CI] = 0.11, 0.29; P < 0.00001) but not unfavourable outcome (modified Rankin Scale [mRS] >4) (OR = 1.38, 95% CI = 0.47, 4.11; P = 0.56) at 12 months follow-up. This survival benefit was maintained regardless of age. CONCLUSION: Early DC reduces mortality but does not appear to improve favourable outcomes in patients younger or older than 60 years after MCI. RCTs incorporating quality of life assessments are warranted for MCI patients, in addition to defining the optimal timing and benefits of DC in older patients.


Assuntos
Craniectomia Descompressiva , Infarto da Artéria Cerebral Média/cirurgia , Humanos , Infarto da Artéria Cerebral Média/mortalidade
4.
Arthritis Res Ther ; 20(1): 87, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720234

RESUMO

BACKGROUND: Autologous chondrocyte implantation (ACI) has a failure rate of approximately 20%, but it is yet to be fully understood why. Biomarkers are needed that can pre-operatively predict in which patients it is likely to fail, so that alternative or individualised therapies can be offered. We previously used label-free quantitation (LF) with a dynamic range compression proteomic approach to assess the synovial fluid (SF) of ACI responders and non-responders. However, we were able to identify only a few differentially abundant proteins at baseline. In the present study, we built upon these previous findings by assessing higher-abundance proteins within this SF, providing a more global proteomic analysis on the basis of which more of the biology underlying ACI success or failure can be understood. METHODS: Isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic analysis was used to assess SF from ACI responders (mean Lysholm improvement of 33; n = 14) and non-responders (mean Lysholm decrease of 14; n = 13) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Differentially abundant proteins in iTRAQ and combined iTRAQ and LF datasets were investigated using pathway and network analyses. RESULTS: iTRAQ proteomic analysis confirmed our previous finding that there is a marked proteomic shift in response to cartilage harvest (70 and 54 proteins demonstrating ≥ 2.0-fold change and p < 0.05 between stages I and II in responders and non-responders, respectively). Further, it highlighted 28 proteins that were differentially abundant between responders and non-responders to ACI, which were not found in the LF study, 16 of which were altered at baseline. The differential expression of two proteins (complement C1s subcomponent and matrix metalloproteinase 3) was confirmed biochemically. Combination of the iTRAQ and LF proteomic datasets generated in-depth SF proteome information that was used to generate interactome networks representing ACI success or failure. Functional pathways that are dysregulated in ACI non-responders were identified, including acute-phase response signalling. CONCLUSIONS: Several candidate biomarkers for baseline prediction of ACI outcome were identified. A holistic overview of the SF proteome in responders and non-responders to ACI  has been profiled, providing a better understanding of the biological pathways underlying clinical outcome, particularly the differential response to cartilage harvest in non-responders.


Assuntos
Condrócitos/transplante , Proteoma/metabolismo , Proteômica/métodos , Líquido Sinovial/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Mapas de Interação de Proteínas , Transplante Autólogo , Adulto Jovem
5.
Epilepsy Res ; 122: 97-101, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26999801

RESUMO

Phenytoin is an antiepileptic drug used in the management of partial and tonic-clonic seizures. In previous studies we have shown that valproate, another antiepileptic drug, reduced the amount of two key bone proteins, pro-collagen I and osteonectin (SPARC, BM-40), in both skin fibroblasts and cultured osteoblast-like cells. Here we show that phenytoin also reduces pro-collagen I production in osteoblast-like cells, but does not appear to cause a decrease in osteonectin message or protein production. Instead, a 24h exposure to a clinically relevant concentration of phenytoin resulted in a dose-dependent change in electrophoretic mobility of osteonectin, which was suggestive of a change in post-translational modification status. The perturbation of these important bone proteins could be one of the mechanisms to explain the bone loss that has been reported following long-term treatment with phenytoin.


Assuntos
Anticonvulsivantes/toxicidade , Colágeno Tipo I/metabolismo , Osteoblastos/efeitos dos fármacos , Osteonectina/metabolismo , Fenitoína/toxicidade , Pró-Colágeno/metabolismo , Animais , Western Blotting , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Carbamazepina/toxicidade , Linhagem Celular , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Frutose/análogos & derivados , Perfilação da Expressão Gênica , Lamotrigina , Levetiracetam , Microscopia Confocal , Osteoblastos/metabolismo , Piracetam/análogos & derivados , Piracetam/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Topiramato , Triazinas/toxicidade , Ácido Valproico/toxicidade
6.
Mol Cell Neurosci ; 69: 12-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26370173

RESUMO

Understanding the intra- and extracellular proteins involved in the development of the corticospinal tract (CST) may offer insights into how the pathway could be regenerated following traumatic spinal cord injury. Currently, however, little is known about the proteome of the developing corticospinal system. The present study, therefore, has used quantitative proteomics and bioinformatics to detail the protein profile of the rat CST during its formation in the spinal cord. This analysis identified increased expression of 65 proteins during the early ingrowth of corticospinal axons into the spinal cord, and 36 proteins at the period of heightened CST growth. A majority of these proteins were involved in cellular assembly and organization, with annotations being most highly associated with cytoskeletal organization, microtubule dynamics, neurite outgrowth, and the formation, polymerization and quantity of microtubules. In addition, 22 proteins were more highly expressed within the developing CST in comparison to other developing white matter tracts of the spinal cord of age-matched animals. Of these differentially expressed proteins, only one, stathmin 1 (a protein known to be involved in microtubule dynamics), was both highly enriched in the developing CST and relatively sparse in other developing descending and ascending spinal tracts. Immunohistochemical analyses of the developing rat spinal cord and fetal human brain stem confirmed the enriched pattern of stathmin expression along the developing CST, and in vitro growth assays of rat corticospinal neurons showed a reduced length of neurite processes in response to pharmacological perturbation of stathmin activity. Combined, these findings suggest that stathmin activity may modulate axonal growth during development of the corticospinal projection, and reinforces the notion that microtubule dynamics could play an important role in the generation and regeneration of the CST.


Assuntos
Axônios/metabolismo , Regeneração Nervosa/fisiologia , Neuritos/metabolismo , Neurônios/citologia , Tratos Piramidais/metabolismo , Estatmina/metabolismo , Animais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo
7.
Future Med Chem ; 5(17): 2091-101, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24215348

RESUMO

There are several lines of laboratory-based evidence emerging to suggest that purified polyphenol compounds such as resveratrol, found naturally in red grapes, epigallocatechin galate from green tea and curcumin from turmeric, might be useful for the treatment of various inherited neuromuscular diseases, including spinal muscular atrophy, Duchenne muscular dystrophy and Charcot-Marie-Tooth disease. Here, we critically examine the scientific evidence related to the known molecular effects that these polyphenols have on different models of inherited neuromuscular disease, with particular attention to problems with the validity of in vitro evidence. We also present proteomic evidence that polyphenols have in vitro effects on cells related to metal ion chelation in cell-culture media. Although their precise mechanisms of action remain somewhat elusive, polyphenols could be an attractive approach to therapy for inherited neuromuscular disease, especially since they may be safer to use on young children, compared with some of the other drug candidates.


Assuntos
Doenças Neuromusculares/tratamento farmacológico , Preparações de Plantas/uso terapêutico , Polifenóis/uso terapêutico , Animais , Humanos , Preparações de Plantas/farmacologia , Plantas/química , Polifenóis/farmacologia
8.
Epilepsy Res ; 106(3): 446-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23906561

RESUMO

Valproate is a histone deacetylase (HDAC) inhibitor that was introduced more than 40 years ago and is commonly used to treat epilepsy and mood disorders. Its long-term side effects can include bone loss, although the exact mechanism for this is currently unknown. In a previous study, we used iTRAQ labelling and mass spectrometry to profile the effect of valproate on skin fibroblast cells. We found, for the first time, that valproate reduced the amount of two key bone proteins; collagen I and osteonectin (SPARC, BM-40) while over 1000 other proteins remained unchanged (Fuller et al., 2010). We now show that valproate treatment also reduces the protein levels of collagen I and osteonectin in the hFOB1.19 osteoblast-like cell line. Pro-collagen I was reduced by 48% and osteonectin by 25% after 24h exposure to a clinically-relevant concentration of valproate. Collagen I is the main protein component of bone matrix and osteonectin has a major role in bone development and mineralisation, so reduced levels may contribute to bone loss following long-term in vivo exposure to valproate.


Assuntos
Anticonvulsivantes/farmacologia , Osso e Ossos/metabolismo , Colágeno Tipo I/metabolismo , Osteonectina/metabolismo , Ácido Valproico/farmacologia , Western Blotting , Matriz Óssea/efeitos dos fármacos , Matriz Óssea/metabolismo , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Imunofluorescência , Humanos , Lamina Tipo A/metabolismo , Osteoblastos/metabolismo , Ligante RANK/metabolismo , Células-Tronco/metabolismo
9.
J Proteome Res ; 9(8): 4228-33, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20568814

RESUMO

Valproate is commonly used as an anticonvulsant and mood stabilizer, but its long-term side-effects can include bone loss. As a histone deacetylase (HDAC) inhibitor, valproate has also been considered for treatment of spinal muscular atrophy (SMA). Using iTRAQ labeling technology, followed by two-dimensional liquid chromatography and mass spectrometry analysis, a quantitative comparison of the proteome of an SMA cell line, with and without valproate treatment, was performed. The most striking change was a reduction in collagens I and VI, while over 1000 other proteins remained unchanged. The collagen I alpha-chain precursor was also reduced by more than 50% suggesting that valproate affects collagen I synthesis. The collagen-binding glycoprotein, osteonectin (SPARC, BM-40) was one of the few other proteins that were significantly reduced by valproate treatment. Collagen I is the main protein component of bone matrix and osteonectin has a major role in bone development, so the results suggest a possible molecular mechanism for bone loss following long-term exposure to valproate. SMA patients may already suffer bone weakness as a result of SMN1 gene deletion, so further bone loss would be undesirable.


Assuntos
Doenças Ósseas Metabólicas/induzido quimicamente , Colágeno/metabolismo , Inibidores de Histona Desacetilases/efeitos adversos , Atrofia Muscular Espinal/tratamento farmacológico , Osteonectina/metabolismo , Proteômica/métodos , Ácido Valproico/efeitos adversos , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Espectrometria de Massas , Pele/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA