Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Transl Med ; 16(745): eadi8214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691622

RESUMO

Mucopolysaccharidosis type I Hurler (MPSIH) is characterized by severe and progressive skeletal dysplasia that is not fully addressed by allogeneic hematopoietic stem cell transplantation (HSCT). Autologous hematopoietic stem progenitor cell-gene therapy (HSPC-GT) provides superior metabolic correction in patients with MPSIH compared with HSCT; however, its ability to affect skeletal manifestations is unknown. Eight patients with MPSIH (mean age at treatment: 1.9 years) received lentiviral-based HSPC-GT in a phase 1/2 clinical trial (NCT03488394). Clinical (growth, measures of kyphosis and genu velgum), functional (motor function, joint range of motion), and radiological [acetabular index (AI), migration percentage (MP) in hip x-rays and MRIs and spine MRI score] parameters of skeletal dysplasia were evaluated at baseline and multiple time points up to 4 years after treatment. Specific skeletal measures were retrospectively compared with an external cohort of HSCT-treated patients. At a median follow-up of 3.78 years after HSPC-GT, all patients treated with HSPC-GT exhibited longitudinal growth within WHO reference ranges and a median height gain greater than that observed in patients treated with HSCT after 3-year follow-up. Patients receiving HSPC-GT experienced complete and earlier normalization of joint mobility compared with patients treated with HSCT. Mean AI and MP showed progressive decreases after HSPC-GT, suggesting a reduction in acetabular dysplasia. Typical spine alterations measured through a spine MRI score stabilized after HSPC-GT. Clinical, functional, and radiological measures suggested an early beneficial effect of HSPC-GT on MPSIH-typical skeletal features. Longer follow-up is needed to draw definitive conclusions on HSPC-GT's impact on MPSIH skeletal dysplasia.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Mucopolissacaridose I , Humanos , Mucopolissacaridose I/terapia , Mucopolissacaridose I/patologia , Mucopolissacaridose I/genética , Masculino , Feminino , Pré-Escolar , Lactente , Resultado do Tratamento , Células-Tronco Hematopoéticas/metabolismo , Criança , Osso e Ossos/patologia , Imageamento por Ressonância Magnética
2.
Cytotherapy ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613540

RESUMO

Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.

3.
Eur J Paediatr Neurol ; 49: 141-154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38554683

RESUMO

INTRODUCTION: Metachromatic leukodystrophy (MLD) is a rare autosomal recessive lysosomal storage disorder resulting from arylsulfatase A enzyme deficiency, leading to toxic sulfatide accumulation. As a result affected individuals exhibit progressive neurodegeneration. Treatments such as hematopoietic stem cell transplantation (HSCT) and gene therapy are effective when administered pre-symptomatically. Newborn screening (NBS) for MLD has recently been shown to be technically feasible and is indicated because of available treatment options. However, there is a lack of guidance on how to monitor and manage identified cases. This study aims to establish consensus among international experts in MLD and patient advocates on clinical management for NBS-identified MLD cases. METHODS: A real-time Delphi procedure using eDELPHI software with 22 experts in MLD was performed. Questions, based on a literature review and workshops, were answered during a seven-week period. Three levels of consensus were defined: A) 100%, B) 75-99%, and C) 50-74% or >75% but >25% neutral votes. Recommendations were categorized by agreement level, from strongly recommended to suggested. Patient advocates participated in discussions and were involved in the final consensus. RESULTS: The study presents 57 statements guiding clinical management of NBS-identified MLD patients. Key recommendations include timely communication by MLD experts with identified families, treating early-onset MLD with gene therapy and late-onset MLD with HSCT, as well as pre-treatment monitoring schemes. Specific knowledge gaps were identified, urging prioritized research for future evidence-based guidelines. DISCUSSION: Consensus-based recommendations for NBS in MLD will enhance harmonized management and facilitate integration in national screening programs. Structured data collection and monitoring of screening programs are crucial for evidence generation and future guideline development. Involving patient representatives in the development of recommendations seems essential for NBS programs.


Assuntos
Leucodistrofia Metacromática , Triagem Neonatal , Humanos , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/diagnóstico , Recém-Nascido , Triagem Neonatal/métodos , Triagem Neonatal/normas , Técnica Delphi , Europa (Continente) , Consenso
4.
Orphanet J Rare Dis ; 19(1): 46, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326898

RESUMO

BACKGROUND: For decades, early allogeneic stem cell transplantation (HSCT) has been used to slow neurological decline in metachromatic leukodystrophy (MLD). There is lack of consensus regarding who may benefit, and guidelines are lacking. Clinical practice relies on limited literature and expert opinions. The European Reference Network for Rare Neurological Diseases (ERN-RND) and the MLD initiative facilitate expert panels for treatment advice, but some countries are underrepresented. This study explores organizational and clinical HSCT practices for MLD in Europe and neighboring countries to enhance optimization and harmonization of cross-border MLD care. METHODS: A web-based EUSurvey was distributed through the ERN-RND and the European Society for Blood and Marrow Transplantation Inborn Errors Working Party. Personal invitations were sent to 89 physicians (43 countries) with neurological/metabolic/hematological expertise. The results were analyzed and visualized using Microsoft Excel and IBM SPSS statistics. RESULTS: Of the 30 countries represented by 42 respondents, 23 countries offer HSCT for MLD. The treatment is usually available in 1-3 centers per country (18/23, 78%). Most countries have no or very few MLD patients transplanted during the past 1-5 years. The eligibility criteria regarding MLD subtype, motor function, IQ, and MRI largely differ across countries. CONCLUSION: HSCT for MLD is available in most European countries, but uncertainties exist in Eastern and South-Eastern Europe. Applied eligibility criteria and management vary and may not align with the latest scientific insights, indicating physicians' struggle in providing evidence-based care. Interaction between local physicians and international experts is crucial for adequate treatment decision-making and cross-border care in the rapidly changing MLD field.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucodistrofia Metacromática , Humanos , Leucodistrofia Metacromática/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Europa (Continente) , Imageamento por Ressonância Magnética , Consenso
5.
J Pers Med ; 13(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37109023

RESUMO

(1) Background: Atidarsagene autotemcel is a hematopoietic stem and progenitor cell gene therapy (HSPC-GT) approved to treat early-onset metachromatic leukodystrophy (MLD). The purpose of this case report is to describe the long-term management of residual gait impairment of a child with late infantile MLD treated with HSPC-GT. (2) Methods: Assessment included Gross Motor Function Measure-88, nerve conduction study, body mass index (BMI), Modified Tardieu Scale, passive range of motion, modified Medical Research Council scale, and gait analysis. Interventions included orthoses, a walker, orthopedic surgery, physiotherapy, and botulinum. (3) Results: Orthoses and a walker were fundamental to maintaining ambulation. Orthopedic surgery positively influenced gait by reducing equinovarus. Nonetheless, unilateral recurrence of varo-supination was observed, attributable to spasticity and muscle imbalance. Botulinum improved foot alignment but induced transient overall weakness. A significant increase in BMI occurred. Finally, a shift to bilateral valgopronation was observed, more easily managed with orthoses. (4) Conclusions: HSPC-GT preserved survival and locomotor abilities. Rehabilitation was then considered fundamental as a complementary treatment. Muscle imbalance and increased BMI contributed to gait deterioration in the growing phase. Caution is recommended when considering botulinum in similar subjects, as the risk of inducing overall weakness can outweigh the benefits of spasticity reduction.

6.
Neuropediatrics ; 54(3): 161-166, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36868263

RESUMO

Mitochondrial leukodystrophies constitute a group of different conditions presenting with a wide range of clinical presentation but with some shared neuroradiological features. Genetic defects in NUBPL have been recognized as cause of a pediatric onset mitochondrial leukodystrophy characterized by onset at the end of the first year of life with motor delay or regression and cerebellar signs, followed by progressive spasticity. Early magnetic resonance imagings (MRIs) show white matter abnormalities with predominant involvement of frontoparietal regions and corpus callosum. A striking cerebellar involvement is usually observed. Later MRIs show spontaneous improvement of white matter abnormalities but worsening of the cerebellar involvement evolving to global atrophy and progressive involvement of brainstem. After the 7 cases initially described, 11 more subjects were reported. Some of them were similar to patients from the original series while few others broadened the phenotypic spectrum. We performed a literature review and report on a new patient who further expand the spectrum of NUBPL-related leukodystrophy. With our study we confirm that the association of cerebral white matter and cerebellar cortex abnormalities is a feature commonly observed in early stages of the disease but beside the original and so far prevalent presentation, there are also uncommon phenotypes: clinical onset can be earlier and more severe than previously thought and signs of extraneurological involvement can be observed. Brain white matter can be diffusely abnormal without anteroposterior gradient, can progressively worsen, and cystic degeneration can be present. Thalami can be involved. Basal ganglia can also become involved during disease evolution.


Assuntos
Leucodistrofia de Células Globoides , Substância Branca , Humanos , Imageamento por Ressonância Magnética , Tronco Encefálico/patologia , Leucodistrofia de Células Globoides/diagnóstico , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Corpo Caloso/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Proteínas Mitocondriais/genética
7.
J Clin Immunol ; 42(8): 1742-1747, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35945378

RESUMO

X-linked chronic granulomatous disease is a rare disease caused by mutations in the CYBB gene. While more extensive knowledge is available on genetics, pathogenesis, and possible therapeutic options, mitochondrial activity and its implications on patient monitoring are still not well-characterized. We have developed a novel protocol to study mitochondrial activity on whole blood of XCGD patients before and after transplantation, as well as on XCGD carriers. Here we present results of these analyses and of the restoration of mitochondrial activity in hyperinflamed X-linked Chronic Granulomatous Disease after hematopoietic stem cell transplantation. Moreover, we show a strong direct correlation between mitochondrial activity, chimerism, and DHR monitored before and after transplantation and in XCGD carriers. In conclusion, based on these findings, we suggest testing this new ready-to-use marker to better characterize patients before and after treatment and to investigate disease expression in carriers.


Assuntos
Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , Humanos , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/terapia , Quimerismo , Fagócitos , Heterozigoto
8.
Lancet ; 399(10322): 372-383, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-35065785

RESUMO

BACKGROUND: Effective treatment for metachromatic leukodystrophy (MLD) remains a substantial unmet medical need. In this study we investigated the safety and efficacy of atidarsagene autotemcel (arsa-cel) in patients with MLD. METHODS: This study is an integrated analysis of results from a prospective, non-randomised, phase 1/2 clinical study and expanded-access frameworks. 29 paediatric patients with pre-symptomatic or early-symptomatic early-onset MLD with biochemical and molecular confirmation of diagnosis were treated with arsa-cel, a gene therapy containing an autologous haematopoietic stem and progenitor cell (HSPC) population transduced ex vivo with a lentiviral vector encoding human arylsulfatase A (ARSA) cDNA, and compared with an untreated natural history (NHx) cohort of 31 patients with early-onset MLD, matched by age and disease subtype. Patients were treated and followed up at Ospedale San Raffaele, Milan, Italy. The coprimary efficacy endpoints were an improvement of more than 10% in total gross motor function measure score at 2 years after treatment in treated patients compared with controls, and change from baseline of total peripheral blood mononuclear cell (PBMC) ARSA activity at 2 years after treatment compared with values before treatment. This phase 1/2 study is registered with ClinicalTrials.gov, NCT01560182. FINDINGS: At the time of analyses, 26 patients treated with arsa-cel were alive with median follow-up of 3·16 years (range 0·64-7·51). Two patients died due to disease progression and one due to a sudden event deemed unlikely to be related to treatment. After busulfan conditioning, all arsa-cel treated patients showed sustained multilineage engraftment of genetically modified HSPCs. ARSA activity in PBMCs was significantly increased above baseline 2 years after treatment by a mean 18·7-fold (95% CI 8·3-42·2; p<0·0001) in patients with the late-infantile variant and 5·7-fold (2·6-12·4; p<0·0001) in patients with the early-juvenile variant. Mean differences in total scores for gross motor function measure between treated patients and age-matched and disease subtype-matched NHx patients 2 years after treatment were significant for both patients with late-infantile MLD (66% [95% CI 48·9-82·3]) and early-juvenile MLD (42% [12·3-71·8]). Most treated patients progressively acquired motor skills within the predicted range of healthy children or had stabilised motor performance (maintaining the ability to walk). Further, most displayed normal cognitive development and prevention or delay of central and peripheral demyelination and brain atrophy throughout follow-up; treatment benefits were particularly apparent in patients treated before symptom onset. The infusion was well tolerated and there was no evidence of abnormal clonal proliferation or replication-competent lentivirus. All patients had at least one grade 3 or higher adverse event; most were related to conditioning or to background disease. The only adverse event related to arsa-cel was the transient development of anti-ARSA antibodies in four patients, which did not affect clinical outcomes. INTERPRETATION: Treatment with arsa-cel resulted in sustained, clinically relevant benefits in children with early-onset MLD by preserving cognitive function and motor development in most patients, and slowing demyelination and brain atrophy. FUNDING: Orchard Therapeutics, Fondazione Telethon, and GlaxoSmithKline.


Assuntos
Cerebrosídeo Sulfatase/genética , Transplante de Células-Tronco Hematopoéticas , Lentivirus/genética , Leucodistrofia Metacromática , Idade de Início , Criança , Pré-Escolar , Feminino , Terapia Genética , Vetores Genéticos , Humanos , Itália , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Masculino , Estudos Prospectivos , Resultado do Tratamento
10.
N Engl J Med ; 385(21): 1929-1940, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34788506

RESUMO

BACKGROUND: Allogeneic hematopoietic stem-cell transplantation is the standard of care for Hurler syndrome (mucopolysaccharidosis type I, Hurler variant [MPSIH]). However, this treatment is only partially curative and is associated with complications. METHODS: We are conducting an ongoing study involving eight children with MPSIH. At enrollment, the children lacked a suitable allogeneic donor and had a Developmental Quotient or Intelligence Quotient score above 70 (i.e., none had moderate or severe cognitive impairment). The children received autologous hematopoietic stem and progenitor cells (HSPCs) transduced ex vivo with an α-L-iduronidase (IDUA)-encoding lentiviral vector after myeloablative conditioning. Safety and correction of blood IDUA activity up to supraphysiologic levels were the primary end points. Clearance of lysosomal storage material as well as skeletal and neurophysiological development were assessed as secondary and exploratory end points. The planned duration of the study is 5 years. RESULTS: We now report interim results. The children's mean (±SD) age at the time of HSPC gene therapy was 1.9±0.5 years. At a median follow-up of 2.10 years, the procedure had a safety profile similar to that known for autologous hematopoietic stem-cell transplantation. All the patients showed prompt and sustained engraftment of gene-corrected cells and had supraphysiologic blood IDUA activity within a month, which was maintained up to the latest follow-up. Urinary glycosaminoglycan (GAG) excretion decreased steeply, reaching normal levels at 12 months in four of five patients who could be evaluated. Previously undetectable levels of IDUA activity in the cerebrospinal fluid became detectable after gene therapy and were associated with local clearance of GAGs. Patients showed stable cognitive performance, stable motor skills corresponding to continued motor development, improved or stable findings on magnetic resonance imaging of the brain and spine, reduced joint stiffness, and normal growth in line with World Health Organization growth charts. CONCLUSIONS: The delivery of HSPC gene therapy in patients with MPSIH resulted in extensive metabolic correction in peripheral tissues and the central nervous system. (Funded by Fondazione Telethon and others; ClinicalTrials.gov number, NCT03488394; EudraCT number, 2017-002430-23.).


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Iduronidase/metabolismo , Mucopolissacaridose I/terapia , Pré-Escolar , Feminino , Seguimentos , Vetores Genéticos , Glicosaminoglicanos/urina , Humanos , Iduronidase/deficiência , Iduronidase/genética , Lactente , Lentivirus , Masculino , Mucopolissacaridose I/metabolismo , Mutação , Transplante de Células-Tronco , Transplante Autólogo
11.
Mol Ther Methods Clin Dev ; 22: 76-83, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34485596

RESUMO

Hematopoietic stem and progenitor cell (HSPC)-based gene therapy (GT) requires the collection of a large number of cells. While bone marrow (BM) is the most common source of HSPCs in pediatric donors, the collection of autologous peripheral blood stem cells (PBSCs) is an attractive alternative for GT. We present safety and efficacy data of a 10-year cohort of 45 pediatric patients who underwent PBSC collection for backup and/or purification of CD34+ cells for ex vivo gene transfer. Median age was 3.7 years and median weight 15.8 kg. After mobilization with lenograstim/plerixafor (n = 41) or lenograstim alone (n = 4) and 1-3 cycles of leukapheresis, median collection was 37 × 106 CD34+ cells/kg. The procedures were well tolerated. Patients who collected ≥7 and ≥13 × 106 CD34+ cells/kg in the first cycle had pre-apheresis circulating counts of at ≥42 and ≥86 CD34+ cells/µL, respectively. Weight-adjusted CD34+ cell yield was positively correlated with peripheral CD34+ cell counts and influenced by female gender, disease, and drug dosage. All patients received a GT product above the minimum target, ranging from 4 to 30.9 × 106 CD34+ cells/kg. Pediatric PBSC collection compares well to BM harvest in terms of CD34+ cell yields for the purpose of GT, with a favorable safety profile.

12.
Nat Med ; 27(8): 1458-1470, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34140705

RESUMO

Gene therapy (GT) has rapidly attracted renewed interest as a treatment for otherwise incurable diseases, with several GT products already on the market and many more entering clinical testing for selected indications. Clonal tracking techniques based on vector integration enable monitoring of the fate of engineered cells in the blood of patients receiving GT and allow assessment of the safety and efficacy of these procedures. However, owing to the limited number of cells that can be tested and the impracticality of studying cells residing in peripheral organs without performing invasive biopsies, this approach provides only a partial snapshot of the clonal repertoire and dynamics of genetically modified cells and reduces the predictive power as a safety readout. In this study, we developed liquid biopsy integration site sequencing, or LiBIS-seq, a polymerase chain reaction technique optimized to quantitatively retrieve vector integration sites from cell-free DNA released into the bloodstream by dying cells residing in several tissues. This approach enabled longitudinal monitoring of in vivo liver-directed GT and clonal tracking in patients receiving hematopoietic stem cell GT, improving our understanding of the clonal composition and turnover of genetically modified cells in solid tissues and, in contrast to conventional analyses based only on circulating blood cells, enabling earlier detection of vector-marked clones that are aberrantly expanding in peripheral tissues.


Assuntos
Ácidos Nucleicos Livres/genética , Vetores Genéticos/genética , Ácidos Nucleicos Livres/efeitos adversos , Terapia Genética , Humanos , Leucemia/genética , Leucemia/terapia , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Linfoma/genética , Linfoma/terapia
15.
Am J Respir Crit Care Med ; 203(4): 447-457, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32897758

RESUMO

Rationale: Cardiopulmonary resuscitation is the cornerstone of cardiac arrest (CA) treatment. However, lung injuries associated with it have been reported.Objectives: To assess 1) the presence and characteristics of lung abnormalities induced by cardiopulmonary resuscitation and 2) the role of mechanical and manual chest compression (CC) in its development.Methods: This translational study included 1) a porcine model of CA and cardiopulmonary resuscitation (n = 12) and 2) a multicenter cohort of patients with out-of-hospital CA undergoing mechanical or manual CC (n = 52). Lung computed tomography performed after resuscitation was assessed qualitatively and quantitatively along with respiratory mechanics and gas exchanges.Measurements and Main Results: The lung weight in the mechanical CC group was higher compared with the manual CC group in the experimental (431 ± 127 vs. 273 ± 66, P = 0.022) and clinical study (1,208 ± 630 vs. 837 ± 306, P = 0.006). The mechanical CC group showed significantly lower oxygenation (P = 0.043) and respiratory system compliance (P < 0.001) compared with the manual CC group in the experimental study. The variation of right atrial pressure was significantly higher in the mechanical compared with the manual CC group (54 ± 11 vs. 31 ± 6 mm Hg, P = 0.001) and significantly correlated with lung weight (r = 0.686, P = 0.026) and respiratory system compliance (r = -0.634, P = 0.027). Incidence of abnormal lung density was higher in patients treated with mechanical compared with manual CC (37% vs. 8%, P = 0.018).Conclusions: This study demonstrated the presence of cardiopulmonary resuscitation-associated lung edema in animals and in patients with out-of-hospital CA, which is more pronounced after mechanical as opposed to manual CC and correlates with higher swings of right atrial pressure during CC.


Assuntos
Reanimação Cardiopulmonar/efeitos adversos , Reanimação Cardiopulmonar/métodos , Lesão Pulmonar/etiologia , Parada Cardíaca Extra-Hospitalar/terapia , Pressão/efeitos adversos , Edema Pulmonar/etiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pesquisa Translacional Biomédica
16.
Bone Marrow Transplant ; 54(12): 1995-2003, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31150018

RESUMO

Collection of an adequate amount of autologous haematopoietic stem progenitor cells (HSPC) is required for ex vivo manipulation and successful engraftment for certain inherited disorders. Fifty-seven paediatric patients (age 0.5-11.4 years) underwent a bone marrow harvest for the purpose of HSPC gene therapy (GT), including adenosine deaminase-severe combined immunodeficiency (ADA-SCID), Wiskott-Aldrich syndrome (WAS) and metachromatic leukodystrophy (MLD) patients. Total nucleated cells and the percentage and absolute counts of CD34+ cells were calculated at defined steps of the procedure (harvest, CD34+ cell purification, transduction with the gene transfer vector and infusion of the medicinal product). A minimum CD34+ cell dose for infusion was 2 × 106/kg, with an optimal target at 5-10 × 106/kg. Median volume of bone marrow harvested was 34.2 ml/kg (range 14.2-56.6). The number of CD34+ cells collected correlated inversely with weight and age in all patients and particularly in the MLD children group. All patients reached the minimum target dose for infusion: median dose of CD34+ cells/kg infused was 10.3 × 106/kg (3.7-25.9), with no difference among the three groups. Bone marrow harvest of volumes > 30 ml/kg in infants and children with ADA-SCID, WAS and MLD is well tolerated and allows obtaining an adequate dose of a medicinal product for HSPC-GT.


Assuntos
Medula Óssea/metabolismo , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Condicionamento Pré-Transplante/métodos , Feminino , Humanos , Masculino
17.
Ann Card Anaesth ; 22(2): 122-135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971592

RESUMO

The noble gas argon (Ar) is a "biologically" active element and has been extensively studied preclinically for its organ protection properties. This work reviews all preclinical studies employing Ar and describes the clinical uses reported in literature, analyzing 55 pertinent articles found by means of a search on PubMed and Embase. Ventilation with Ar has been tested in different models of acute disease at concentrations ranging from 20% to 80% and for durations between a few minutes up to days. Overall, lesser cell death, smaller infarct size, and better functional recovery after ischemia have been repeatedly observed. Modulation of the molecular pathways involved in cell survival, with resulting anti-apoptotic and pro-survival effects, appeared as the determinant mechanism by which Ar fulfills its protective role. These beneficial effects have been reported regardless of onset and duration of Ar exposure, especially after cardiac arrest. In addition, ventilation with Ar was safe both in animals and humans. Thus, preclinical and clinical data support future clinical studies on the role of inhalatory Ar as an organ protector.


Assuntos
Argônio/farmacologia , Lesões Encefálicas/prevenção & controle , Parada Cardíaca/prevenção & controle , Traumatismo por Reperfusão/prevenção & controle , Animais , Modelos Animais de Doenças , Humanos , Fármacos Neuroprotetores/farmacologia , Ratos
19.
J Inherit Metab Dis ; 40(4): 543-554, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28560469

RESUMO

Lysosomal storage diseases (LSDs) are rare inherited metabolic disorders characterized by a dysfunction in lysosomes, leading to waste material accumulation and severe organ damage. Enzyme replacement therapy (ERT) and haematopoietic stem cell transplant (HSCT) have been exploited as potential treatments for LSDs but pre-clinical and clinical studies have shown in some cases limited efficacy. Intravenous ERT is able to control the damage of visceral organs but cannot prevent nervous impairment. Depending on the disease type, HSCT has important limitations when performed for early variants, unless treatment occurs before disease onset. In the attempt to overcome these issues, gene therapy has been proposed as a valuable therapeutic option, either ex vivo, with target cells genetically modified in vitro, or in vivo, by inserting the genetic material with systemic or intra-parenchymal, in situ administration. In particular, the use of autologous haematopoietic stem cells (HSC) transduced with a viral vector containing a healthy copy of the mutated gene would allow supra-normal production of the defective enzyme and cross correction of target cells in multiple tissues, including the central nervous system. This review will provide an overview of the most recent scientific advances in HSC-based gene therapy approaches for the treatment of LSDs with particular focus on metachromatic leukodystrophy (MLD) and mucopolysaccharidosis type I (MPS-I).


Assuntos
Terapia Genética , Leucodistrofia Metacromática/terapia , Doenças por Armazenamento dos Lisossomos/terapia , Mucopolissacaridose I/terapia , Animais , Terapia de Reposição de Enzimas , Técnicas de Transferência de Genes , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucodistrofia Metacromática/genética , Doenças por Armazenamento dos Lisossomos/genética , Mucopolissacaridose I/genética , Resultado do Tratamento , Vírus
20.
Sci Rep ; 7: 40136, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28074903

RESUMO

Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency.


Assuntos
Adenosina Desaminase/deficiência , Adenosina/metabolismo , Encéfalo/metabolismo , Doenças do Sistema Nervoso/fisiopatologia , Animais , Comportamento , Comportamento Animal , Humanos , Camundongos , Doenças do Sistema Nervoso/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA