Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 10(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722104

RESUMO

Can you imagine a disease in which intake of an excess amount of sugars or carbohydrates causes hyperammonemia? It is hard to imagine the intake causing hyperammonemia. AGC2 or citrin deficiency shows their symptoms following sugar/carbohydrates intake excess and this disease is now known as a pan-ethnic disease. AGC2 (aspartate glutamate carrier 2) or citrin is a mitochondrial transporter which transports aspartate (Asp) from mitochondria to cytosol in exchange with glutamate (Glu) and H+. Asp is originally supplied from mitochondria to cytosol where it is necessary for synthesis of proteins, nucleotides, and urea. In cytosol, Asp can be synthesized from oxaloacetate and Glu by cytosolic Asp aminotransferase, but oxaloacetate formation is limited by the amount of NAD+. This means an increase in NADH causes suppression of Asp formation in the cytosol. Metabolism of carbohydrates and other substances which produce cytosolic NADH such as alcohol and glycerol suppress oxaloacetate formation. It is forced under citrin deficiency since citrin is a member of malate/Asp shuttle. In this review, we will describe history of identification of the SLC25A13 gene as the causative gene for adult-onset type II citrullinemia (CTLN2), a type of citrin deficiency, pathophysiology of citrin deficiency together with animal models and possible treatments for citrin deficiency newly developing.


Assuntos
Ácido Aspártico/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Citrulinemia/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Animais , Transporte Biológico , Proteínas de Ligação ao Cálcio/genética , Citrulinemia/genética , Citrulinemia/terapia , Predisposição Genética para Doença/genética , Humanos , Proteínas de Transporte da Membrana Mitocondrial/genética , Transportadores de Ânions Orgânicos/genética
2.
Mol Ther ; 27(7): 1242-1251, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31056400

RESUMO

Citrin deficiency is an autosomal recessive disorder caused by loss-of-function mutations in SLC25A13, encoding the liver-specific mitochondrial aspartate/glutamate transporter. It has a broad spectrum of clinical phenotypes, including life-threatening neurological complications. Conventional protein replacement therapy is not an option for these patients because of drug delivery hurdles, and current gene therapy approaches (e.g., AAV) have been hampered by immunogenicity and genotoxicity. Although dietary approaches have shown some benefits in managing citrin deficiency, the only curative treatment option for these patients is liver transplantation, which is high-risk and associated with long-term complications because of chronic immunosuppression. To develop a new class of therapy for citrin deficiency, codon-optimized mRNA encoding human citrin (hCitrin) was encapsulated in lipid nanoparticles (LNPs). We demonstrate the efficacy of hCitrin-mRNA-LNP therapy in cultured human cells and in a murine model of citrin deficiency that resembles the human condition. Of note, intravenous (i.v.) administration of the hCitrin-mRNA resulted in a significant reduction in (1) hepatic citrulline and blood ammonia levels following oral sucrose challenge and (2) sucrose aversion, hallmarks of hCitrin deficiency. In conclusion, mRNA-LNP therapy could have a significant therapeutic effect on the treatment of citrin deficiency and other mitochondrial enzymopathies with limited treatment options.


Assuntos
Citrulinemia/tratamento farmacológico , Citrulinemia/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , RNA Mensageiro/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Glucosefosfato Desidrogenase/genética , Células HeLa , Células Hep G2 , Humanos , Lipídeos/química , Mutação com Perda de Função , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Nanopartículas/química , Fases de Leitura Aberta/genética , RNA Mensageiro/síntese química , RNA Mensageiro/química , RNA Mensageiro/genética , Transfecção , Resultado do Tratamento
3.
Gene ; 575(2 Pt 2): 513-523, 2016 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-26432003

RESUMO

Desialylation in the lysosome is a crucial step for glycoprotein degradation. The abnormality of lysosomal desialylation by NEU1 sialidase is involved in diseases of mammals such as sialidosis and galactosialidosis. Mammalian Neu1 sialidase is also localized at plasma membrane where it regulates several signaling pathways through glycoprotein desialylation. In fish, on the other hand, the mechanism of desialylation in the lysosome and functions of Neu1 sialidase are still unclear. Here, to understand the significance of fish Neu1 sialidase, neu1 gene was cloned from medaka brain and the profiles of its polypeptides were analyzed. Open reading frame of medaka neu1 consisted 1,182 bp and the similarity of its deduced amino acids with human NEU1 was 57%. As this recombinant polypeptide did not show significant sialidase activity, medaka cathepsin A, known in mammals as protective protein activating Neu1, was cloned and then co-expressed with medaka Neu1 to examine whether medaka cathepsin A activates Neu1 activity. As a result, Neu1/cathepsin A showed a drastic increase of sialidase activity toward MU-NANA. Major substrate of medaka Neu1 was 3-sialyllactose and its optimal pH was 4.0. With immunofluorescence analysis, signal of overexpressed medaka Neu1 was found to coincide with Lysotracker signals (organelle marker of lysosome) and co-localized with medaka cathepsin A in fish hepatic Hepa-T1 cells. Furthermore, part of medaka Neu1 was also detected at plasma membrane. Medaka Neu1 possessed signal peptide sequence at N-terminal and incomplete lysosomal targeting sequence at C-terminus. Medaka neu1 gene was ubiquitously expressed in various medaka tissues, and its expression level was significantly higher than other sialidase genes such as neu3a, neu3b and neu4. The present study revealed the profiles of fish Neu1 sialidase and indicated its high conservation with human NEU1 for the first time, suggesting the presence of similar desialylation system in the medaka lysosome to human. Moreover, the present study showed the possibility of medaka as a model animal of human NEU1 sialidase.


Assuntos
Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Lisossomos/enzimologia , Neuraminidase/genética , Neuraminidase/metabolismo , Oryzias/genética , Animais , Sequência de Bases , Encéfalo/metabolismo , Linhagem Celular , Clonagem Molecular , Sequência Conservada , Células HEK293 , Humanos , Oryzias/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA