Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Clin Endocrinol Metab ; 108(8): 2105-2114, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36652439

RESUMO

CONTEXT: Limited information is available concerning the genetic spectrum of pheochromocytoma and paraganglioma (PPGL) patients in South America. Germline SDHB large deletions are very rare worldwide, but most of the individuals harboring the SDHB exon 1 deletion originated from the Iberian Peninsula. OBJECTIVE: Our aim was to investigate the spectrum of SDHB genetic defects in a large cohort of Brazilian patients with PPGLs. METHODS: Genetic investigation of 155 index PPGL patients was performed by Sanger DNA sequencing, multiplex ligation-dependent probe amplification, and/or target next-generation sequencing panel. Common ancestrality was investigated by microsatellite genotyping with haplotype reconstruction, and analysis of deletion breakpoint. RESULTS: Among 155 index patients, heterozygous germline SDHB pathogenic or likely pathogenic variants were identified in 22 cases (14.2%). The heterozygous SDHB exon 1 complete deletion was the most frequent genetic defect in SDHB, identified in 8 out of 22 (36%) of patients. Haplotype analysis of 5 SDHB flanking microsatellite markers demonstrated a significant difference in haplotype frequencies in a case-control permutation test (P = 0.03). More precisely, 3 closer/informative microsatellites were shared by 6 out of 8 apparently unrelated cases (75%) (SDHB-GATA29A05-D1S2826-D1S2644 | SDHB-186-130-213), which was observed in only 1 chromosome (1/42) without SDHB exon 1 deletion (X2 = 29.43; P < 0.001). Moreover, all cases with SDHB exon 1 deletion had the same gene breakpoint pattern of a 15 678 bp deletion previously described in the Iberian Peninsula, indicating a common origin. CONCLUSION: The germline heterozygous SDHB exon 1 deletion was the most frequent genetic defect in the Brazilian PPGL cohort. Our findings demonstrated a founder effect for the SDHB exon 1 deletion in Brazilian patients with paragangliomas.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Feocromocitoma , Humanos , Succinato Desidrogenase/genética , Efeito Fundador , Brasil/epidemiologia , Paraganglioma/genética , Paraganglioma/patologia , Feocromocitoma/genética , Éxons/genética , Neoplasias das Glândulas Suprarrenais/genética , Mutação em Linhagem Germinativa
2.
Horm Res Paediatr ; 95(3): 264-274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35390795

RESUMO

INTRODUCTION: Isolated SHOX haploinsufficiency is a common monogenic cause of short stature. Few studies compare untreated and rhGH-treated patients up to adult height (AH). Our study highlights a growth pattern from childhood to AH in patients with SHOX haploinsufficiency and analyzes the real-world effectiveness of rhGH alone or plus GnRH analog (GnRHa). METHODS: Forty-seven patients (18 untreated and 29 rhGH-treated) with SHOX haploinsufficiency were included in a longitudinal retrospective study. Adult height was attained in 13 untreated and 18 rhGH-treated (rhGH alone [n = 8] or plus GnRHa [n = 10]) patients. RESULTS: The untreated group decreased height SDS from baseline to AH (-0.8 [-1.1; -0.4]), with an increase in the prevalence of short stature from 31% to 77%. Conversely, the rhGH-treated group had an improvement in height SDS from baseline to AH (0.6 [0.2; 0.6]; p < 0.001), with a reduction in the prevalence of short stature (from 61% to 28%). AH in the rhGH-treated patients was 1 SD (6.3 cm) taller than in untreated ones. Regarding the use of GnRHa, the subgroups (rhGH alone or plus GnRHa) attained similar AH, despite the higher prevalence of pubertal patients and worse AH prediction at the start of rhGH treatment in patients who used combined therapy. CONCLUSION: The use of rhGH treatment improves AH in patients with SHOX haploinsufficiency, preventing the loss of height potential during puberty. In peripubertal patients, the addition of GnRHa to rhGH allows AH attainment similar to the AH of patients who start rhGH alone in the prepubertal age.


Assuntos
Estatura , Nanismo , Hormônio do Crescimento Humano , Proteína de Homoeobox de Baixa Estatura , Adulto , Estatura/genética , Criança , Nanismo/tratamento farmacológico , Hormônio Liberador de Gonadotropina , Haploinsuficiência , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Estudos Retrospectivos , Proteína de Homoeobox de Baixa Estatura/genética
3.
Clinics ; 77: 100132, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1421235

RESUMO

Abstract Objectives To analyze the efficiency of a multigenic targeted massively parallel sequencing panel related to endocrine disorders for molecular diagnosis of patients assisted in a tertiary hospital involved in the training of medical faculty. Material and methods Retrospective analysis of the clinical diagnosis and genotype obtained from 272 patients in the Endocrine unit of a tertiary hospital was performed using a custom panel designed with 653 genes, most of them already associated with the phenotype (OMIM) and some candidate genes that englobes developmental, metabolic and adrenal diseases. The enriched DNA libraries were sequenced in NextSeq 500. Variants found were then classified according to ACMG/AMP criteria, with Varsome and InterVar. Results Three runs were performed; the mean coverage depth of the targeted regions in panel sequencing data was 249×, with at least 96.3% of the sequenced bases being covered more than 20-fold. The authors identified 66 LP/P variants (24%) and 27 VUS (10%). Considering the solved cases, 49 have developmental diseases, 12 have metabolic and 5 have adrenal diseases. Conclusion The application of a multigenic panel aids the training of medical faculty in an academic hospital by showing the picture of the molecular pathways behind each disorder. This may be particularly helpful in developmental disease cases. A precise genetic etiology provides an improvement in understanding the disease, guides decisions about prevention or treatment, and allows genetic counseling.

4.
J Clin Endocrinol Metab ; 104(7): 2827-2841, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30830215

RESUMO

CONTEXT: Primary ovarian insufficiency (POI) is a cause of female infertility. However, the genetic etiology of this disorder remains unknown in most patients with POI. OBJECTIVE: To investigate the genetic etiology of idiopathic POI. PATIENTS AND METHODS: We performed whole-exome sequencing of 11 families with idiopathic POI. To gain insights into the potential mechanisms associated with this mutation, we generated two mouse lines via clustered regularly interspaced short palindromic repeats/Cas9 technology. RESULTS: A pathogenic homozygous missense mutation (c.149A>G; p.Asp50Gly) in the POLR3H gene in two unrelated families was identified. Pathogenic mutations in this subunit have not been associated with human disorders. Loss-of-function Polr3h mutation in mice caused early embryonic lethality. Mice with homozygous point mutation (Polr3hD50G) were viable but showed delayed pubertal development, characterized by late first estrus or preputial separation. The Polr3hD50G female and male mice showed decreased fertility later in life, associated with small litter size and increased time to pregnancy or to impregnate a female. Polr3hD50G mice displayed decreased expression of ovarian Foxo3a and lower numbers of primary follicles. CONCLUSION: Our manuscript provides a case of POI caused by missense mutation in POLR3H, expanding the knowledge of molecular pathways of the ovarian function and human infertility. Screening of the POLR3H gene may elucidate POI cases without previously identified genetic causes, supporting approaches of genetic counseling.


Assuntos
Insuficiência Ovariana Primária/genética , RNA Polimerase III/genética , Adolescente , Animais , Sistemas CRISPR-Cas , Criança , Feminino , Proteína Forkhead Box O3/metabolismo , Técnicas de Inativação de Genes , Heterozigoto , Homozigoto , Humanos , Infertilidade/genética , Tamanho da Ninhada de Vivíparos , Mutação com Perda de Função , Masculino , Camundongos , Mutação de Sentido Incorreto , Ovário/metabolismo , Maturidade Sexual/genética , Tempo para Engravidar , Sequenciamento do Exoma
5.
J Clin Endocrinol Metab ; 104(6): 2023-2030, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602027

RESUMO

CONTEXT: Patients born small for gestational age (SGA) who present with persistent short stature could have an underlying genetic etiology that will account for prenatal and postnatal growth impairment. We applied a unique massive parallel sequencing approach in cohort of patients with exclusively nonsyndromic SGA to simultaneously interrogate for clinically substantial genetic variants. OBJECTIVE: To perform a genetic investigation of children with isolated short stature born SGA. DESIGN: Screening by exome (n = 16) or targeted gene panel (n = 39) sequencing. SETTING: Tertiary referral center for growth disorders. PATIENTS AND METHODS: We selected 55 patients born SGA with persistent short stature without an identified cause of short stature. MAIN OUTCOME MEASURES: Frequency of pathogenic findings. RESULTS: We identified heterozygous pathogenic or likely pathogenic genetic variants in 8 of 55 patients, all in genes already associated with growth disorders. Four of the genes are associated with growth plate development, IHH (n = 2), NPR2 (n = 2), SHOX (n = 1), and ACAN (n = 1), and two are involved in the RAS/MAPK pathway, PTPN11 (n = 1) and NF1 (n = 1). None of these patients had clinical findings that allowed for a clinical diagnosis. Seven patients were SGA only for length and one was SGA for both length and weight. CONCLUSION: These genomic approaches identified pathogenic or likely pathogenic genetic variants in 8 of 55 patients (15%). Six of the eight patients carried variants in genes associated with growth plate development, indicating that mild forms of skeletal dysplasia could be a cause of growth disorders in this group of patients.


Assuntos
Estatura/genética , Transtornos do Crescimento/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Recém-Nascido Pequeno para a Idade Gestacional/crescimento & desenvolvimento , Peso Corporal/genética , Criança , Pré-Escolar , Feminino , Marcadores Genéticos/genética , Transtornos do Crescimento/genética , Humanos , Recém-Nascido , Masculino , Sequenciamento do Exoma
6.
Brain ; 141(8): 2299-2311, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985992

RESUMO

The transcription factor BCL11B is essential for development of the nervous and the immune system, and Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development in mice. However, the precise role of BCL11B in humans is largely unexplored, except for a single patient with a BCL11B missense mutation, affected by multisystem anomalies and profound immune deficiency. Using massively parallel sequencing we identified 13 patients bearing heterozygous germline alterations in BCL11B. Notably, all of them are affected by global developmental delay with speech impairment and intellectual disability; however, none displayed overt clinical signs of immune deficiency. Six frameshift mutations, two nonsense mutations, one missense mutation, and two chromosomal rearrangements resulting in diminished BCL11B expression, arose de novo. A further frameshift mutation was transmitted from a similarly affected mother. Interestingly, the most severely affected patient harbours a missense mutation within a zinc-finger domain of BCL11B, probably affecting the DNA-binding structural interface, similar to the recently published patient. Furthermore, the most C-terminally located premature termination codon mutation fails to rescue the progenitor cell proliferation defect in hippocampal slice cultures from Bcl11b-deficient mice. Concerning the role of BCL11B in the immune system, extensive immune phenotyping of our patients revealed alterations in the T cell compartment and lack of peripheral type 2 innate lymphoid cells (ILC2s), consistent with the findings described in Bcl11b-deficient mice. Unsupervised analysis of 102 T lymphocyte subpopulations showed that the patients clearly cluster apart from healthy children, further supporting the common aetiology of the disorder. Taken together, we show here that mutations leading either to BCL11B haploinsufficiency or to a truncated BCL11B protein clinically cause a non-syndromic neurodevelopmental delay. In addition, we suggest that missense mutations affecting specific sites within zinc-finger domains might result in distinct and more severe clinical outcomes.


Assuntos
Transtornos do Neurodesenvolvimento/genética , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica/genética , Mutação em Linhagem Germinativa , Haploinsuficiência , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Linfócitos/patologia , Linfócitos/fisiologia , Masculino , Camundongos , Mutação , Proteínas Repressoras/metabolismo , Linfócitos T/fisiologia , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Clin Endocrinol (Oxf) ; 88(3): 425-431, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29265571

RESUMO

OBJECTIVES: The aetiology of congenital hypopituitarism (CH) is unknown in most patients. Rare copy number variants (CNVs) have been implicated as the cause of genetic syndromes with previously unknown aetiology. Our aim was to study the presence of CNVs and their pathogenicity in patients with idiopathic CH associated with complex phenotypes. DESIGN AND PATIENTS: We selected 39 patients with syndromic CH for array-based comparative genomic hybridization (aCGH). Patients with pathogenic CNVs were also evaluated by whole exome sequencing. RESULTS: Twenty rare CNVs were detected in 19 patients. Among the identified rare CNVs, six were classified as benign, eleven as variants of uncertain clinical significance (VUS) and four as pathogenic. The three patients with pathogenic CNVs had combined pituitary hormone deficiencies, and the associated complex phenotypes were intellectual disabilities: trichorhinophalangeal type I syndrome (TRPS1) and developmental delay/intellectual disability with cardiac malformation, respectively. Patient one has a de novo 1.6-Mb deletion located at chromosome 3q13.31q13.32, which overlaps with the region of the 3q13.31 deletion syndrome. Patient two has a 10.5-Mb de novo deletion at 8q23.1q24.11, encompassing the TRPS1 gene; his phenotype is compatible with TRPS1. Patient three carries a chromosome translocation t(2p24.3;4q35.1) resulting in two terminal alterations: a 2p25.3p24.3 duplication of 14.7 Mb and a 4-Mb deletion at 4q35.1q35.2. CONCLUSIONS: Copy number variants explained the phenotype in 8% of patients with hypopituitarism and additional complex phenotypes. This suggests that chromosomal alterations are an important contributor to syndromic hypopituitarism.


Assuntos
Variações do Número de Cópias de DNA , Hipopituitarismo/congênito , Hipopituitarismo/etiologia , Fenótipo , Aberrações Cromossômicas , Hibridização Genômica Comparativa , Hormônio do Crescimento Humano/deficiência , Humanos , Hipopituitarismo/genética , Deficiência Intelectual , Sequenciamento do Exoma
8.
Eur J Med Genet ; 61(3): 130-133, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29133208

RESUMO

BACKGROUND: Fanconi Anemia (FA) is a rare and heterogeneous genetic syndrome. It is associated with short stature, bone marrow failure, high predisposition to cancer, microcephaly and congenital malformation. Many genes have been associated with FA. Previously, two adult patients with biallelic pathogenic variant in Breast Cancer 1 gene (BRCA1) had been identified in Fanconi Anemia-like condition. CLINICAL REPORT: The proband was a 2.5 year-old girl with severe short stature, microcephaly, neurodevelopmental delay, congenital heart disease and dysmorphic features. Her parents were third degree cousins. Routine screening tests for short stature was normal. METHODS: We conducted whole exome sequencing (WES) of the proband and used an analysis pipeline to identify rare nonsynonymous genetic variants that cause short stature. RESULTS: We identified a homozygous loss-of-function BRCA1 mutation (c.2709T > A; p. Cys903*), which promotes the loss of critical domains of the protein. Cytogenetic study with DEB showed an increased chromosomal breakage. We screened heterozygous parents of the index case for cancer and we detected, in her mother, a metastatic adenocarcinoma in an axillar lymph node with probable primary site in the breast. CONCLUSION: It is possible to consolidate the FA-like phenotype associated with biallelic loss-of-function BRCA1, characterized by microcephaly, short stature, developmental delay, dysmorphic face features and cancer predisposition. In our case, the WES allowed to establish the genetic cause of short stature in the context of a chromosome instability syndrome. An identification of BRCA1 mutations in our patient allowed precise genetic counseling and also triggered cancer screening for the patient and her family members.


Assuntos
Proteína BRCA1/genética , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Predisposição Genética para Doença , Homozigoto , Mutação , Pré-Escolar , Feminino , Genótipo , Humanos , Masculino , Linhagem , Fenótipo
9.
Genet Med ; 20(1): 91-97, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28661490

RESUMO

PurposeC-type natriuretic peptide (CNP) and its principal receptor, natriuretic peptide receptor B (NPR-B), have been shown to be important in skeletal development. CNP and NPR-B are encoded by natriuretic peptide precursor-C (NPPC) and natriuretic peptide receptor 2 (NPR2) genes, respectively. While NPR2 mutations have been described in patients with skeletal dysplasias and idiopathic short stature (ISS), and several Npr2 and Nppc skeletal dysplasia mouse models exist, no mutations in NPPC have been described in patients to date.MethodsNPPC was screened in 668 patients (357 with disproportionate short stature and 311 with autosomal dominant ISS) and 29 additional ISS families in an ongoing whole-exome sequencing study.ResultsTwo heterozygous NPPC mutations, located in the highly conserved CNP ring, were identified. Both showed significant reductions in cyclic guanosine monophosphate synthesis, confirming their pathogenicity. Interestingly, one has been previously linked to skeletal abnormalities in the spontaneous Nppc mouse long-bone abnormality (lbab) mutant.ConclusionsOur results demonstrate, for the first time, that NPPC mutations cause autosomal dominant short stature in humans. The NPPC mutations cosegregated with a short stature and small hands phenotype. A CNP analog, which is currently in clinical trials for the treatment of achondroplasia, seems a promising therapeutic approach, since it directly replaces the defective protein.


Assuntos
Nanismo/diagnóstico , Nanismo/genética , Genes Dominantes , Mutação , Peptídeo Natriurético Tipo C/genética , Adolescente , Sequência de Aminoácidos , Criança , Biologia Computacional/métodos , Análise Mutacional de DNA , Feminino , Gráficos de Crescimento , Heterozigoto , Humanos , Masculino , Peptídeo Natriurético Tipo C/química , Fenótipo , Sequenciamento do Exoma
10.
Genet. mol. biol ; 40(2): 436-441, Apr.-June 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892403

RESUMO

ABSTRACT Homozygous STAT5B mutations causing growth hormone insensitivity with immune dysfunction were described in 10 patients since 2003, including two Brazilian brothers from the south of Brazil. Our objectives were to evaluate the prevalence of their STAT5B mutation in this region and to analyze the presence of a founder effect. We obtained DNA samples from 1,205 local inhabitants, 48 relatives of the homozygous patients and four individuals of another affected family. Genotyping for STAT5B c.424_427del mutation and for two polymorphic markers around it was done through fragment analysis technique. We also determined Y-chromosome and mtDNA haplotypes and genomic ancestry in heterozygous carriers. We identified seven families with STAT5B c.424_427del mutation, with 33 heterozygous individuals. The minor allelic frequency of this mutation was 0.29% in this population (confidence interval 95% 0.08-0.5%), which is significantly higher than the frequency of other pathogenic STAT5B allele variants observed in public databases (p < 0.001). All heterozygous carriers had the same haplotype present in the homozygous patients, found in only 9.4% of non-carriers (p < 0.001), supporting the existence of a founder effect. The Y-chromosome haplotype, mtDNA and genomic ancestry analysis indicated a European origin of this mutation. Our results provide compelling evidence for a founder effect of STAT5B c.424_427del mutation.

11.
J Clin Endocrinol Metab ; 102(2): 460-469, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27870580

RESUMO

CONTEXT: Heterozygous mutations in the aggrecan gene (ACAN) cause autosomal dominant short stature with accelerated skeletal maturation. OBJECTIVE: We sought to characterize the phenotypic spectrum and response to growth-promoting therapies. PATIENTS AND METHODS: One hundred three individuals (57 females, 46 males) from 20 families with autosomal dominant short stature and heterozygous ACAN mutations were identified and confirmed using whole-exome sequencing, targeted next-generation sequencing, and/or Sanger sequencing. Clinical information was collected from the medical records. RESULTS: Identified ACAN variants showed perfect cosegregation with phenotype. Adult individuals had mildly disproportionate short stature [median height, -2.8 standard deviation score (SDS); range, -5.9 to -0.9] and a history of early growth cessation. The condition was frequently associated with early-onset osteoarthritis (12 families) and intervertebral disc disease (9 families). No apparent genotype-phenotype correlation was found between the type of ACAN mutation and the presence of joint complaints. Childhood height was less affected (median height, -2.0 SDS; range, -4.2 to -0.6). Most children with ACAN mutations had advanced bone age (bone age - chronologic age; median, +1.3 years; range, +0.0 to +3.7 years). Nineteen individuals had received growth hormone therapy with some evidence of increased growth velocity. CONCLUSIONS: Heterozygous ACAN mutations result in a phenotypic spectrum ranging from mild and proportionate short stature to a mild skeletal dysplasia with disproportionate short stature and brachydactyly. Many affected individuals developed early-onset osteoarthritis and degenerative disc disease, suggesting dysfunction of the articular cartilage and intervertebral disc cartilage. Additional studies are needed to determine the optimal treatment strategy for these patients.


Assuntos
Agrecanas/genética , Nanismo/genética , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antropometria/métodos , Braquidactilia/genética , Criança , Pré-Escolar , Análise Mutacional de DNA/métodos , Nanismo/tratamento farmacológico , Feminino , Crescimento/genética , Hormônio do Crescimento/uso terapêutico , Heterozigoto , Humanos , Lactente , Degeneração do Disco Intervertebral/genética , Deslocamento do Disco Intervertebral/genética , Masculino , Pessoa de Meia-Idade , Osteocondrite Dissecante/congênito , Osteocondrite Dissecante/genética , Linhagem , Fenótipo , Adulto Jovem
12.
Horm Res Paediatr ; 86(5): 342-348, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27245183

RESUMO

BACKGROUND: Acromicric dysplasia (AD) and geleophysic dysplasia 2 (GD2) belong to the category of acromelic dysplasia syndromes, consisting of severe short stature, short hands and feet and skin thickening. Both can result from missense mutations in the transforming growth factor beta 5 domain of the fibrillin-1 gene (FBN1). METHODS: Two patients (P1 age 10, and P2 age 7) from unrelated families presented to their endocrinologist with severe short stature (approx. -4 SDS). They were otherwise asymptomatic and only had mild facial dysmorphisms. Extensive endocrine work-up did not reveal an underlying etiology. Exome sequencing was performed in each family. RESULTS: Exome sequencing identified the presence of the same heterozygous missense variant c.C5183T (p.Ala1728Val) in the FBN1 gene in both P1 and P2. This variant was previously reported in a patient with GD2 and associated cardiac valvulopathy and hepatomegaly. Detailed clinical re-examination, cardiac and skeletal imaging did not reveal any abnormalities in P1 or P2 other than mild hip dysplasia. CONCLUSION: This report broadens the phenotypic spectrum of growth disorders associated with FBN1 mutations. Identical mutations give rise to a wide phenotypic spectrum, ranging from isolated short stature to a more classic picture of GD2 with cardiac involvement, distinct facial dysmorphisms and various skeletal anomalies.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Exoma , Fibrilina-1/genética , Transtornos do Crescimento/genética , Deformidades Congênitas dos Membros/genética , Mutação de Sentido Incorreto , Adulto , Substituição de Aminoácidos , Doenças do Desenvolvimento Ósseo/patologia , Criança , Pré-Escolar , Feminino , Transtornos do Crescimento/patologia , Humanos , Lactente , Deformidades Congênitas dos Membros/patologia , Masculino
13.
J Clin Endocrinol Metab ; 98(10): E1636-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24001744

RESUMO

CONTEXT: Based on the stature observed in relatives of patients with acromesomelic dysplasia, type Maroteaux, homozygous for mutations in natriuretic peptide receptor B gene (NPR2), it has been suggested that heterozygous mutations in this gene could be responsible for the growth impairment observed in some children with idiopathic short stature (ISS). OBJECTIVE: The objective of the study was to investigate the presence of NPR2 mutations in a group of patients with ISS. PATIENTS AND METHODS: The NPR2 coding region was directly sequenced in 47 independent patients with ISS. The functional consequences of NPR2 nonsynonymous variations were established using in vitro cell-based assays. RESULTS: Three novel heterozygous NPR2 mutations were identified: c.226T>C (p.Ser76Pro), c.788G>C (p.Arg263Pro), and c.2455C>T (p.Arg819Cys). These allelic variants were not found in our controls or in the 1000 Genomes database. In silico analysis suggested that the three missense mutations are probably damaging. All of them were selected for in vitro functional evaluation. Cells transfected with the three mutants failed to produce cyclic GMP after treatment with C-type natriuretic peptide. Cells cotransfected with mutant and wild-type-NPR-B (1:1) showed a significant decrease in cGMP levels after C-type natriuretic peptide stimulation in comparison with cells cotrasnfected with empty vector and wild type, suggesting a dominant-negative effect. These three mutations segregated with short stature phenotype in an autosomal dominant pattern (height SD score ranged from -4.5 to -1.7). One of these patients and two relatives have disproportionate short stature, whereas in another patient a nonspecific skeletal abnormality was observed. All three of these patients were treated with recombinant human GH (33-50 µg/kg · d) without significant height SD score change during therapy. CONCLUSIONS: We identified heterozygous NPR2 mutations in 6% of patients initially classified as ISS. Affected patients have mild and variable degrees of short stature without a distinct phenotype. Heterozygous mutations in NPR2 could be an important cause of nonsyndromic familial short stature.


Assuntos
Estatura/genética , Nanismo/genética , Receptores do Fator Natriurético Atrial/genética , Criança , Feminino , Heterozigoto , Humanos , Masculino , Mutação
14.
Eur J Med Genet ; 53(5): 234-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20538086

RESUMO

SHOX haploinsufficiency causes a wide spectrum of short stature phenotypes, such as Leri-Weill dyschondrosteosis (LWD) and disproportionate short stature (DSS). SHOX deletions are responsible for approximately two thirds of isolated haploinsufficiency; therefore, it is important to determine the most appropriate methodology for detection of gene deletion. In this study, three methodologies for the detection of SHOX deletions were compared: the fluorescence in situ hybridization (FISH), microsatellite analysis and multiplex ligation-dependent probe amplification (MLPA). Forty-four patients (8 LWD and 36 DSS) were analyzed. The cosmid LLNOYCO3'M'34F5 was used as a probe for the FISH analysis and microsatellite analysis were performed using three intragenic microsatellite markers. MLPA was performed using commercial kits. Twelve patients (8 LWD and 4 DSS) had deletions in SHOX area detected by MLPA and 2 patients generated discordant results with the other methodologies. In the first case, the deletion was not detected by FISH. In the second case, both FISH and microsatellite analyses were unable to identify the intragenic deletion. In conclusion, MLPA was more sensitive, less expensive and less laborious; therefore, it should be used as the initial molecular method for the detection of SHOX gene deletion.


Assuntos
Deleção de Genes , Proteínas de Homeodomínio/genética , Técnicas de Amplificação de Ácido Nucleico , Osteocondrodisplasias/genética , Transtornos do Crescimento/genética , Haploinsuficiência , Humanos , Hibridização in Situ Fluorescente , Repetições de Microssatélites , Fenótipo , Proteína de Homoeobox de Baixa Estatura
15.
J Clin Endocrinol Metab ; 95(1): 328-32, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19926713

RESUMO

CONTEXT: Isolated heterozygous SHOX defects are the most frequent monogenic cause of short stature, and combined therapy with recombinant human GH (rhGH) and GnRH analog (GnRHa) in pubertal patients has been suggested, but there are no data on final height. OBJECTIVE: The aim of the study was to analyze adult height after rhGH and GnRHa therapy in patients with SHOX haploinsufficiency. PATIENTS: Ten peripubertal patients with isolated SHOX defects participated in the study. INTERVENTION: Five patients were followed without treatment, and five were treated with rhGH (50 mug/kg/d) and depot leuprolide acetate (3.75 mg/month). MAIN OUTCOME MEASURES: Adult height sd score (SDS) was measured. RESULTS: All patients followed without treatment had marked downward growth shift during puberty (height SDS, -1.2 +/- 0.7 at 11.4 +/- 1.4 yr; adult height SDS, -2.5 +/- 0.5). Conversely, four of five patients treated with rhGH for 2 to 4.9 yr associated to GnRHa for 1.4 to 5.8 yr improved their height SDS from -2.3 +/- 1.3 at 11.8 +/- 2.1 yr to a final height SDS of -1.7 +/- 1.6. The difference between the mean height SDS at the first evaluation and final height SDS was statistically significant in nontreated vs. treated patients (mean height SDS change, -1.2 +/- 0.4 vs. 0.6 +/- 0.4, respectively; P <0.001). CONCLUSION: A gain in adult height of patients with isolated SHOX defects treated with combined rhGH and GnRHa therapy was demonstrated for the first time, supporting this treatment for children with SHOX defects who have just started puberty to avoid the loss of growth potential observed in these patients during puberty.


Assuntos
Hormônio Liberador de Gonadotropina/análogos & derivados , Transtornos do Crescimento/tratamento farmacológico , Proteínas de Homeodomínio/genética , Hormônio do Crescimento Humano/administração & dosagem , Leuprolida/administração & dosagem , Puberdade/efeitos dos fármacos , Adolescente , Estatura/efeitos dos fármacos , Estatura/genética , Criança , Códon sem Sentido , Esquema de Medicação , Combinação de Medicamentos , Feminino , Hormônio Liberador de Gonadotropina/administração & dosagem , Transtornos do Crescimento/genética , Humanos , Masculino , Proteínas Recombinantes/administração & dosagem , Proteína de Homoeobox de Baixa Estatura , Resultado do Tratamento
16.
Arq. bras. endocrinol. metab ; 52(8): 1382-1387, Nov. 2008. ilus
Artigo em Inglês | LILACS | ID: lil-503309

RESUMO

LWD is associated to SHOX haploinsufficiency, in most cases, due to gene deletion. Generally FISH and microsatellite analysis are used to identify SHOX deletion. MLPA is a new method of detecting gene copy variation, allowing simultaneous analysis of several regions. Here we describe the presence of a SHOX intragenic deletion in a family with LWD, analyzed through different methodologies. Genomic DNA of 11 subjects from one family were studied by microsatellite analysis, direct sequencing and MLPA. FISH was performed in two affected individuals. Microsatellite analysis showed that all affected members shared the same haplotype suggesting the involvement of SHOX. MLPA detected an intragenic deletion involving exons IV-VIa, which was not detected by FISH and microsatellite analysis. In conclusion, the MLPA technique was proved to be the best solution on detecting this small deletion, it has the advantage of being less laborious also allowing the analysis of several regions simultaneously.


Discondrosteose de Léri-Weill (DLW) está associada à haploinsuficiência do gene SHOX resultante, principalmente, de deleções. Geralmente, o FISH e a análise de microssatélites são os métodos utilizados para a identificação destas deleções. MLPA é um novo método para detectar variações do número de cópias gênicas, permitindo uma análise simultânea de várias regiões. Aqui, descrevemos uma pequena deleção intragênica no SHOX em uma família com DLW analisada por diferentes metodologias. DNA genômico de 11 membros de uma família foram estudados por microssatélites, seqüenciamento direto e MLPA. FISH foi realizado em dois indivíduos afetados. Os microssatélites demonstraram que todos os membros afetados apresentavam o mesmo haplotipo, sugerindo o envolvimento do SHOX. MLPA identificou uma deleção intragênica envolvendo os éxons IV-VIa, que não foi detectada pelo FISH e pelos microssatélites. Conclui-se que o MLPA demonstrou melhor resolução para detectar esta pequena deleção, com a vantagem de ser menos trabalhoso e permitir a análise de várias regiões simultaneamente.


Assuntos
Criança , Feminino , Humanos , Masculino , Sondas de DNA/genética , Deleção de Genes , Proteínas de Homeodomínio/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Osteocondrodisplasias/genética , Estudos de Casos e Controles , Repetições de Microssatélites , Linhagem , Análise de Sequência de DNA/métodos
17.
Arq Bras Endocrinol Metabol ; 52(5): 765-73, 2008 Jul.
Artigo em Português | MEDLINE | ID: mdl-18797583

RESUMO

Studies involving patients with short stature and partial deletion of sex chromosomes identified SHOX gene in the pseudoautosomal region of the X and Y chromosomes. SHOX haploinsufficiency is an important cause of short stature in a diversity of clinical conditions. It explains 2/3 of short stature observed in Turner syndrome (TS) patients. Heterozygous mutations in SHOX are observed in 77% of patients with Leri-Weill dyschondrosteosis, a common dominant inherited skeletal dysplasia and in 3% of children with idiopathic short stature, indicating that SHOX defects are the most frequent monogenetic cause of short stature. The sitting height/height ratio (SH/H) standard deviation score is a simple way to assess body proportions and together with a careful exam of other family members, effectively selected a group of patients that presented a high frequency of SHOX mutations. Growth hormone treatment of short stature due to TS is well established and considering the common etiology of short stature in patients with isolated defects of SHOX gene, this treatment is also proposed for these patients. Here, we review clinical, molecular and therapeutic aspects of SHOX haploinsufficiency.


Assuntos
Estatura/genética , Nanismo/genética , Proteínas de Homeodomínio/genética , Nanismo/diagnóstico , Nanismo/tratamento farmacológico , Genes Homeobox/genética , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Fenótipo , Proteína de Homoeobox de Baixa Estatura
18.
Arq. bras. endocrinol. metab ; 52(5): 765-773, jul. 2008. ilus, tab
Artigo em Português | LILACS | ID: lil-491843

RESUMO

Estudos realizados em pacientes portadores de deleções parciais dos cromossomos sexuais permitiram a caracterização do SHOX, gene localizado na região pseudoautossômica no braço curto dos cromossomos sexuais, fundamental na determinação da altura normal. A perda de uma cópia deste gene na síndrome de Turner (ST) explica dois terços da baixa estatura observada nesta síndrome. A haploinsuficiência do SHOX é detectada em 77 por cento dos pacientes com discondrosteose de Leri-Weill, uma forma comum de displasia esquelética de herança autossômica dominante e em 3 por cento das crianças com baixa estatura idiopática (BEI), tornando os defeitos neste gene a principal causa monogênica de baixa estatura. A medida da altura sentada em relação à altura total (Z da AS/AT para idade e sexo) é uma forma simples de identificar a desproporção corpórea e, associada ao exame cuidadoso do paciente e de outros membros da família, auxilia na seleção de pacientes para o estudo molecular do SHOX. O uso de hormônio de crescimento (GH) está bem estabelecido na ST e em razão da causa comum da baixa estatura com o de crianças com defeitos isolados do SHOX o tratamento destes pacientes com GH é também proposto. Neste artigo será revisado os aspectos clínicos, moleculares e terapêuticos da haploinsuficiência do SHOX.


Studies involving patients with short stature and partial deletion of sex chromosomes identified SHOX gene in the pseudoautosomal region of the X and Y chromosomes. SHOX haploinsufficiency is an important cause of short stature in a diversity of clinical conditions. It explains 2/3 of short stature observed in Turner syndrome (TS) patients. Heterozygous mutations in SHOX are observed in 77 percent of patients with Leri-Weill dyschondrosteosis, a common dominant inherited skeletal dysplasia and in 3 percent of children with idiopathic short stature, indicating that SHOX defects are the most frequent monogenetic cause of short stature. The sitting height/height ratio (SH/H) standard deviation score is a simple way to assess body proportions and together with a careful exam of other family members, effectively selected a group of patients that presented a high frequency of SHOX mutations. Growth hormone treatment of short stature due to TS is well established and considering the common etiology of short stature in patients with isolated defects of SHOX gene, this treatment is also proposed for these patients. Here, we review clinical, molecular and therapeutic aspects of SHOX haploinsufficiency.


Assuntos
Humanos , Estatura/genética , Nanismo/genética , Proteínas de Homeodomínio/genética , Nanismo/diagnóstico , Nanismo/tratamento farmacológico , Genes Homeobox/genética , Hormônio do Crescimento Humano/uso terapêutico , Fenótipo
19.
Arq Bras Endocrinol Metabol ; 52(8): 1382-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19169498

RESUMO

LWD is associated to SHOX haploinsufficiency, in most cases, due to gene deletion. Generally FISH and microsatellite analysis are used to identify SHOX deletion. MLPA is a new method of detecting gene copy variation, allowing simultaneous analysis of several regions. Here we describe the presence of a SHOX intragenic deletion in a family with LWD, analyzed through different methodologies. Genomic DNA of 11 subjects from one family were studied by microsatellite analysis, direct sequencing and MLPA. FISH was performed in two affected individuals. Microsatellite analysis showed that all affected members shared the same haplotype suggesting the involvement of SHOX. MLPA detected an intragenic deletion involving exons IV-VIa, which was not detected by FISH and microsatellite analysis. In conclusion, the MLPA technique was proved to be the best solution on detecting this small deletion, it has the advantage of being less laborious also allowing the analysis of several regions simultaneously.


Assuntos
Sondas de DNA/genética , Deleção de Genes , Proteínas de Homeodomínio/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Osteocondrodisplasias/genética , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Repetições de Microssatélites , Linhagem , Análise de Sequência de DNA/métodos , Proteína de Homoeobox de Baixa Estatura
20.
Rev. bras. hematol. hemoter ; 27(1): 31-36, jan.-mar. 2005. ilus, graf
Artigo em Português | LILACS | ID: lil-414615

RESUMO

O Mieloma Mútiplo é uma doença de evolução heterogênea, na qual a maioria dos pacientes recai muito precocemente após o tratamento. Nesse contexto, o objetivo principal deste trabalho é relatar diferentes estratégias de análise do mieloma por citometria de fluxo e sua importância na associação com citogenética no diagnóstico de doença residual. Entre 2.450 casos de doenças onco-hematológicas estudados, de setembro de 1993 a agosto de 2004, foram diagnosticados 50 (2,0 por cento) Mieloma Múltiplo. Foram feitas análises morfológicas e, até o ano de 2000, as imunofenotipagens foram realizadas no citômetro de fluxo XL-MCL (Coulter) pela estratégia tamanho/complexidade, utilizando os anticorpos monoclonais CD19, CD20, CD38, CD45, CD56, HLA-DR, kappa e lambda de superfície e intracitoplasmáticas. A partir de 2001 passaram-se a utilizar painéis seqüenciais através do histograma CD138/Complexidade e anticorpos monoclonais CD19, CD38, CD56, CD117, kappa e lambda intracitoplasmáticas. Mais recentemente foram incluídos no painel os anticorpos CD45, HLA-DR e CD33. A análise do DNA foi realizada por citometria com auxílio do programa Multicycle em nove amostras, sendo que sete apresentaram população aneuplóide. O cariótipo com banda G foi realizado em 25 casos, e a pesquisa de deleção do 13q por FISH em 15. Alterações cromossômicas foram encontradas em 4 casos, sendo duas deleções de 13q confirmadas por FISH. A mudança na estratégia de gates associada à citogenética e ao estudo da cinética do ciclo do DNA permitem melhor identificação de células plasmáticas anômalas, avaliação do prognóstico e detecção de doença residual.


Assuntos
Masculino , Feminino , Pessoa de Meia-Idade , Humanos , Citogenética , Citometria de Fluxo , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo , Neoplasia Residual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA