Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 19(8): 1303-1309, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32424026

RESUMO

MERS is a life-threatening disease and MERS-CoV has the potential to cause the next pandemic. Protein acetylation is known to play a crucial role in host response to viral infection. Acetylation of viral proteins encoded by other RNA viruses have been reported to affect viral replication. It is therefore of interest to see whether MERS-CoV proteins are also acetylated. Viral proteins obtained from infected cells were trypsin-digested into peptides. Acetylated peptides were enriched by immunoprecipitation and subject to nano-LC-Orbitrap analysis. Bioinformatic analysis was performed to assess the conservation level of identified acetylation sites and to predict the upstream regulatory factors. A total of 12 acetylation sites were identified from 7 peptides, which all belong to the replicase polyprotein pp1ab. All identified acetylation sites were found to be highly conserved across MERS-CoV sequences in NCBI database. Upstream factors, including deacetylases of the SIRT1 and HDAC families as well as acetyltransferases of the TIP60 family, were predicted to be responsible for regulating the acetylation events identified. Western blotting confirms that acetylation events indeed occur on pp1ab protein by expressing NSP4 in HEK293 cells. Acetylation events on MERS-CoV viral protein pp1ab were identified for the first time, which indicate that MERS-CoV might use the host acetylation machinery to regulate its enzyme activity and to achieve optimal replication. Upstream factors were predicted, which might facilitate further analysis of the regulatory mechanism of MERS-CoV replication.


Assuntos
Lisina/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Proteínas Virais/metabolismo , Acetilação , Células HEK293 , Humanos
2.
FASEB J ; 33(8): 8865-8877, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034780

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV) is capable of inducing a storm of proinflammatory cytokines. In this study, we show that the SARS-CoV open reading frame 3a (ORF3a) accessory protein activates the NLRP3 inflammasome by promoting TNF receptor-associated factor 3 (TRAF3)-mediated ubiquitination of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). SARS-CoV and its ORF3a protein were found to be potent activators of pro-IL-1ß gene transcription and protein maturation, the 2 signals required for activation of the NLRP3 inflammasome. ORF3a induced pro-IL-1ß transcription through activation of NF-κB, which was mediated by TRAF3-dependent ubiquitination and processing of p105. ORF3a-induced elevation of IL-1ß secretion was independent of its ion channel activity or absent in melanoma 2 but required NLRP3, ASC, and TRAF3. ORF3a interacted with TRAF3 and ASC, colocalized with them in discrete punctate structures in the cytoplasm, and facilitated ASC speck formation. TRAF3-dependent K63-linked ubiquitination of ASC was more pronounced in SARS-CoV-infected cells or when ORF3a was expressed. Taken together, our findings reveal a new mechanism by which SARS-CoV ORF3a protein activates NF-κB and the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of p105 and ASC.-Siu, K.-L., Yuen, K.-S., Castaño-Rodriguez, C., Ye, Z.-W., Yeung, M.-L., Fung, S.-Y., Yuan, S., Chan, C.-P., Yuen, K.-Y., Enjuanes, L., Jin, D.-Y. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ubiquitinação , Proteínas Estruturais Virais/metabolismo , Células A549 , Animais , Chlorocebus aethiops , Células HEK293 , Humanos , Inflamassomos/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Células Vero
3.
Nucleic Acids Res ; 46(8): 4054-4071, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29547894

RESUMO

STING is a core adaptor in innate nucleic acid sensing in mammalian cells, on which different sensing pathways converge to induce type I interferon (IFN) production. Particularly, STING is activated by 2'3'-cGAMP, a cyclic dinucleotide containing mixed phosphodiester linkages and produced by cytoplasmic DNA sensor cGAS. Here, we reported on a novel transcript isoform of STING designated STING-ß that dominantly inhibits innate nucleic acid sensing. STING-ß without transmembrane domains was widely expressed at low levels in various human tissues and viral induction of STING-ß correlated inversely with IFN-ß production. The expression of STING-ß declined in patients with lupus, in which type I IFNs are commonly overproduced. STING-ß suppressed the induction of IFNs, IFN-stimulated genes and other cytokines by various immunostimulatory agents including cyclic dinucleotides, DNA, RNA and viruses, whereas depletion of STING-ß showed the opposite effect. STING-ß interacted with STING-α and antagonized its antiviral function. STING-ß also interacted with TBK1 and prevented it from binding with STING-α, TRIF or other transducers. In addition, STING-ß bound to 2'3'-cGAMP and impeded its binding with and activation of STING-α, leading to suppression of IFN-ß production. Taken together, STING-ß sequesters 2'3'-cGAMP second messenger and other transducer molecules to inhibit innate nucleic acid sensing dominantly.


Assuntos
Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Animais , Linhagem Celular , DNA/fisiologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , NF-kappa B/metabolismo , Fosforilação , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fenômenos Fisiológicos Virais
4.
FASEB J ; 32(8): 4380-4393, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29513570

RESUMO

PACT is a double-stranded RNA-binding protein that has been implicated in host-influenza A virus (IAV) interaction. PACT facilitates the action of RIG-I in the activation of the type I IFN response, which is suppressed by the viral nonstructural protein NS1. PACT is also known to interact with the IAV RNA polymerase subunit PA. Exactly how PACT exerts its antiviral activity during IAV infection remains to be elucidated. In the current study, we demonstrated the interplay between PACT and IAV polymerase. Induction of IFN-ß by the IAV RNP complex was most robust when both RIG-I and PACT were expressed. PACT-dependent activation of IFN-ß production was suppressed by the IAV polymerase subunits, polymerase acidic protein, polymerase basic protein 1 (PB1), and PB2. PACT associated with PA, PB1, and PB2. Compromising PACT in IAV-infected A549 cells resulted in the augmentation of viral RNA (vRNA) transcription and replication and IFN-ß production. Furthermore, vRNA replication was boosted by knockdown of PACT in both A549 cells and IFN-deficient Vero cells. Thus, the antiviral activity of PACT is mediated primarily via its interaction with and inhibition of IAV polymerase. Taken together, our findings reveal a new facet of the host-IAV interaction in which the interplay between PACT and IAV polymerase affects the outcome of viral infection and antiviral response.-Chan, C.-P., Yuen, C.-K., Cheung, P.-H. H., Fung, S.-Y., Lui, P.-Y., Chen, H., Kok, K.-H., Jin, D.-Y. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase.


Assuntos
Antivirais/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Influenza A/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células A549 , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HeLa , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Interferon beta/metabolismo , Proteínas/metabolismo , Células Vero , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
5.
J Virol ; 90(8): 3902-3912, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26819312

RESUMO

UNLABELLED: Infection with human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and tropical spastic paraparesis. Type I interferons (IFNs) are key effectors of the innate antiviral response, and IFN-α combined with the nucleoside reverse transcriptase inhibitor zidovudine is considered the standard first-line therapy for ATL. HTLV-1 oncoprotein Tax is known to suppress innate IFN production and response but the underlying mechanisms remain to be fully established. In this study, we report on the suppression of type I IFN production by HTLV-1 Tax through interaction with and inhibition of TBK1 kinase that phosphorylates IRF3. Induced transcription of IFN-ß was severely impaired in HTLV-1-transformed ATL cells and freshly infected T lymphocytes. The ability to suppress IRF3 activation was ascribed to Tax. The expression of Tax alone sufficiently repressed the induction of IFN production by RIG-I plus PACT, cGAMP synthase plus STING, TBK1, IKKε, IRF3, and IRF7, but not by IRF3-5D, a dominant-active phosphomimetic mutant. This suggests that Tax perturbs IFN production at the step of IRF3 phosphorylation. Tax mutants deficient for CREB or NF-κB activation were fully competent in the suppression of IFN production. Coimmunoprecipitation experiments confirmed the association of Tax with TBK1, IKKε, STING, and IRF3.In vitrokinase assay indicated an inhibitory effect of Tax on TBK1-mediated phosphorylation of IRF3. Taken together, our findings suggested a new mechanism by which HTLV-1 oncoprotein Tax circumvents the production of type I IFNs in infected cells. Our findings have implications in therapeutic intervention of ATL. IMPORTANCE: Human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia (ATL), an aggressive and fatal blood cancer, as well as another chronic disabling disease of the spinal cord. Treatments are unsatisfactory, and options are limited. A combination of antiviral cellular protein alpha interferon and zidovudine, which is an inhibitor of a viral enzyme called reverse transcriptase, has been recommended as the standard first-line therapy for ATL. Exactly how HTLV-1 interacts with the cellular machinery for interferon production and action is not well understood. Our work sheds light on the mechanism of action for the inhibition of interferon production by an HTLV-1 oncogenic protein called Tax. Our findings might help to improve interferon-based anti-HTLV-1 and anti-ATL therapy.


Assuntos
Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Fator Regulador 3 de Interferon/antagonistas & inibidores , Interferon beta/antagonistas & inibidores , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Produtos do Gene tax/genética , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/biossíntese , Células Jurkat , Leucemia-Linfoma de Células T do Adulto/virologia , NF-kappa B/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/metabolismo , Linfócitos T/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA