Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 78(Pt 3): 337-352, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234148

RESUMO

The introduction of disulfide bonds into periplasmic proteins is a critical process in many Gram-negative bacteria. The formation and regulation of protein disulfide bonds have been linked to the production of virulence factors. Understanding the different pathways involved in this process is important in the development of strategies to disarm pathogenic bacteria. The well characterized disulfide bond-forming (DSB) proteins play a key role by introducing or isomerizing disulfide bonds between cysteines in substrate proteins. Curiously, the suppressor of copper sensitivity C proteins (ScsCs), which are part of the bacterial copper-resistance response, share structural and functional similarities with DSB oxidase and isomerase proteins, including the presence of a catalytic thioredoxin domain. However, the oxidoreductase activity of ScsC varies with its oligomerization state, which depends on a poorly conserved N-terminal domain. Here, the structure and function of Caulobacter crescentus ScsC (CcScsC) have been characterized. It is shown that CcScsC binds copper in the copper(I) form with subpicomolar affinity and that its isomerase activity is comparable to that of Escherichia coli DsbC, the prototypical dimeric bacterial isomerase. It is also reported that CcScsC functionally complements trimeric Proteus mirabilis ScsC (PmScsC) in vivo, enabling the swarming of P. mirabilis in the presence of copper. Using mass photometry and small-angle X-ray scattering (SAXS) the protein is demonstrated to be trimeric in solution, like PmScsC, and not dimeric like EcDsbC. The crystal structure of CcScsC was also determined at a resolution of 2.6 Å, confirming the trimeric state and indicating that the trimerization results from interactions between the N-terminal α-helical domains of three CcScsC protomers. The SAXS data analysis suggested that the protomers are dynamic, like those of PmScsC, and are able to sample different conformations in solution.


Assuntos
Caulobacter crescentus , Isomerases de Dissulfetos de Proteínas , Proteínas de Bactérias/química , Caulobacter crescentus/metabolismo , Cobre , Dissulfetos , Proteína C , Isomerases de Dissulfetos de Proteínas/química , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Protein Expr Purif ; 193: 106047, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35026386

RESUMO

Suppressor of copper sensitivity (Scs) proteins play a role in the bacterial response to copper stress in many Gram-negative bacteria, including in the human pathogen Proteus mirabilis. Recently, the ScsC protein from P. mirabilis (PmScsC) was characterized as a trimeric protein with isomerase activity that contributes to the ability of the bacterium to swarm in the presence of copper. The CXXC motif catalytic cysteines of PmScsC are maintained in their active reduced state by the action of its membrane-bound partner protein, the Proteus mirabilis ScsB (PmScsB). Thus, PmScsC and PmScsB form a redox relay in vivo. The predicted domain arrangement of PmScsB comprises a central transmembrane ß-domain and two soluble, periplasmic domains, the N-terminal α-domain and C-terminal γ-domain. Here, we provide a procedure for the recombinant expression and purification of the full-length PmScsB protein. Using Lemo21 (DE3) cells we expressed PmScsB and, after extraction and purification, we were able to achieve a yield of 3 mg of purified protein per 8 L of bacterial culture. Furthermore, using two orthogonal methods - AMS labelling of free thiols and a scrambled RNase A activity assay - PmScsB is shown to catalyze the reduction of PmScsC. Our results demonstrate that the PmScsC and PmScsB redox relay can be reconstituted in vitro using recombinant full-length PmScsB membrane protein. This finding provides a promising starting point for the in vitro biochemical and structural characterization of the P. mirabilis ScsC and ScsB interaction.


Assuntos
Cobre , Proteus mirabilis , Proteínas de Bactérias/química , Cobre/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Periplasma/metabolismo , Proteus mirabilis/química , Proteus mirabilis/genética , Proteus mirabilis/metabolismo
3.
J Biol Chem ; 293(16): 5793-5805, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29491145

RESUMO

Correct disulfide bond formation is essential for proper folding of many proteins, including bacterial virulence factors. The suppressor of copper sensitivity (Scs) proteins have roles in dithiol/disulfide interchange and the bacterial response to copper stress. Encoded in a four-gene cassette (ScsABCD) present in many Gram-negative bacteria, the Scs proteins are enigmatic and poorly characterized. Here, we show that the periplasmic α-domain of the membrane protein ScsB in the Gram-negative bacterium Proteus mirabilis forms a redox relay with the soluble periplasmic protein PmScsC. We also found that the periplasmic α-domain is sufficient to activate the disulfide isomerase activity of PmScsC. The crystal structure of PmScsBα at a resolution of 1.54 Å revealed that it comprises two structurally similar immunoglobulin-like folds, one of which includes a putative redox-active site with the sequence CXXXC. We confirmed the importance of these cysteine residues for PmScsBα function, and in addition, we engineered cysteine variants that produced a stable complex between PmScsC and PmScsBα. Using small-angle X-ray and neutron scattering analyses with contrast variation, we determined a low-resolution structure of the PmScsC-PmScsBα complex. The structural model of this complex suggested that PmScsBα uses both of its immunoglobulin-like folds to interact with PmScsC and revealed that the highly dynamic PmScsC becomes ordered upon PmScsBα binding. These findings add to our understanding of the poorly characterized Scs proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteus mirabilis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Oxirredução , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/química , Domínios Proteicos , Multimerização Proteica , Infecções por Proteus/microbiologia , Proteus mirabilis/química , Alinhamento de Sequência
4.
Nat Commun ; 8: 16065, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28722010

RESUMO

Copper resistance is a key virulence trait of the uropathogen Proteus mirabilis. Here we show that P. mirabilis ScsC (PmScsC) contributes to this defence mechanism by enabling swarming in the presence of copper. We also demonstrate that PmScsC is a thioredoxin-like disulfide isomerase but, unlike other characterized proteins in this family, it is trimeric. PmScsC trimerization and its active site cysteine are required for wild-type swarming activity in the presence of copper. Moreover, PmScsC exhibits unprecedented motion as a consequence of a shape-shifting motif linking the catalytic and trimerization domains. The linker accesses strand, loop and helical conformations enabling the sampling of an enormous folding landscape by the catalytic domains. Mutation of the shape-shifting motif abolishes disulfide isomerase activity, as does removal of the trimerization domain, showing that both features are essential to foldase function. More broadly, the shape-shifter peptide has the potential for 'plug and play' application in protein engineering.


Assuntos
Cobre , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteus mirabilis/enzimologia , Estrutura Quaternária de Proteína , Proteus mirabilis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA