Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 278(37): 34804-11, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12832421

RESUMO

Human cytomegalovirus US2 and US11 target newly synthesized class I major histocompatibility complex (MHC) heavy chains for rapid degradation by the proteasome through a process termed dislocation. The presence of US2 induces the formation of class I MHC heavy chain conjugates of increased molecular weight that are recognized by a conformation-specific monoclonal antibody, W6/32, suggesting that these class I MHC molecules retain their proper tertiary structure. These conjugates are properly folded glycosylated heavy chains modified by attachment of an estimated one, two, and three ubiquitin molecules. The folded ubiquitinated class I MHC heavy chains are not observed in control cells or in cells transfected with US11, suggesting that US2 targets class I MHC heavy chains for dislocation in a manner distinct from that used by US11. This is further supported by the fact that US2 and US11 show different requirements in terms of the conformation of the heavy chain molecule. Although ubiquitin conjugation may occur on the cytosolic tail of the class I MHC molecule, replacement of lysines in the cytosolic tail of heavy chains with arginine does not prevent their degradation by US2. In an in vitro system that recapitulates US2-mediated dislocation, heavy chains that lack these lysines still occur in an ubiquitin-modified form, but in the soluble (cytoplasmic) fraction. Such ubiquitin conjugation can only occur on the class I MHC lumenal domain and is likely to take place once class I MHC heavy chains have been discharged from the endoplasmic reticulum. We conclude that ubiquitinylation of class I MHC heavy chain is not required during the initial step of the US2-mediated dislocation reaction.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo Principal de Histocompatibilidade , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/metabolismo , Proteínas Virais/metabolismo , Animais , Citosol/metabolismo , Humanos , Cinética , Biossíntese de Proteínas , Dobramento de Proteína , Transporte Proteico , Coelhos , Transcrição Gênica , Células Tumorais Cultivadas , Proteínas do Envelope Viral
2.
J Biol Chem ; 278(9): 6664-72, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12482753

RESUMO

We examined the effects of protein folding on endoplasmic reticulum (ER)-to-cytosol transport (dislocation) by exploiting the well-characterized dihydrofolate reductase (DHFR) domain. DHFR retains the capacity to bind folate analogues in the lumen of microsomes and in the ER of intact cells, upon which it acquires a conformation resistant to proteinase K digestion. Here we show that a Class I major histocompatibility complex heavy chain fused to DHFR is still recognized by the human cytomegalovirus-encoded glycoproteins US2 and US11, resulting in dislocation of the fusion protein from the ER in vitro and in vivo. A folded state of the DHFR domain does not impair dislocation of Class I MHC heavy chains in vitro or in living cells. In fact, a slight acceleration of the dislocation of DHFR heavy chain fusion was observed in vitro in the presence of a folate analogue. These results suggest that one or more of the channels used for dislocation can accommodate polypeptides that contain a tightly folded domain of considerable size. Our data raise the possibility that the Sec61 channel can be modified to accommodate a folded DHFR domain for dislocation, but not for translocation into the ER, or that a channel altogether distinct from Sec61 is used for dislocation.


Assuntos
Citosol/metabolismo , Retículo Endoplasmático/metabolismo , DNA Complementar/metabolismo , Endopeptidase K/farmacologia , Ácido Fólico/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Microssomos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Canais de Translocação SEC , Frações Subcelulares/metabolismo , Transcrição Gênica , Transfecção , Células Tumorais Cultivadas
3.
Mol Immunol ; 39(7-8): 431-41, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12413694

RESUMO

Programmed cell death (apoptosis) is crucial for thymocyte development. We analyzed the role of the ubiquitin (Ub)-proteasome pathway in dexamethasone-triggered and TCR-mediated apoptosis in fetal thymic organ culture (FTOC). Proteasome activity was increased in apoptotic thymocytes, as visualized by active-site labeling of proteasomal beta subunits. The activity of deubiquitinating enzymes in murine apoptotic thymocytes was likewise examined by active-site labeling. We show that the deubiquitinating enzyme USP7 (HAUSP) is proteolytically processed upon dexamethasone-, gamma-irradiation-, and antigen-induced cell death. Such processing of HAUSP does not occur in caspase 3-/- thymocytes, or upon pretreatment of wild type thymocytes with the general caspase inhibitor ZVAD-fmk. Thus, our results suggest that thymocyte apoptosis leads to modification of deubiquitinating enzymes by caspase activity and may provide an additional link between the ubiquitin-proteasome pathway and the caspase cascade during programmed cell death.


Assuntos
Apoptose , Caspases/fisiologia , Cisteína Endopeptidases/fisiologia , Endopeptidases/metabolismo , Complexos Multienzimáticos/fisiologia , Linfócitos T/fisiologia , Ubiquitina/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 12 , Caspase 3 , Dexametasona/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Complexo de Endopeptidases do Proteassoma , Ubiquitina Tiolesterase , Peptidase 7 Específica de Ubiquitina
5.
J Virol ; 76(22): 11753-6, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12388737

RESUMO

Human cytomegalovirus (HCMV) US10 encodes a glycoprotein that binds to major histocompatibility complex (MHC) class I heavy chains. While expression of US10 delays the normal trafficking of MHC class I molecules out of the endoplasmic reticulum, US10 does not obviously facilitate or inhibit the action of two other HCMV-encoded MHC class I binding proteins, US2 and US11.


Assuntos
Proteínas do Capsídeo , Capsídeo/metabolismo , Citomegalovirus/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Fosfoproteínas/metabolismo , Apresentação de Antígeno , Humanos , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transfecção , Células Tumorais Cultivadas , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
J Biol Chem ; 277(5): 3258-67, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11717308

RESUMO

Human cytomegalovirus encodes two glycoproteins, US2 and US11, that target major histocompatibility complex (MHC) class I heavy chains for proteasomal degradation. We have developed a mRNA-dependent cell-free system that recapitulates US2- and US11-mediated degradation of MHC class I heavy chains. Microsomes support the degradation of MHC class I heavy chains in the presence of US2 or US11 in a cytosol-dependent manner. In vitro, the glycosylated heavy chain is exported from the microsomes. A deglycosylated breakdown intermediate of the heavy chain identical to that generated in intact cells accumulates in soluble form in the presence of proteasome inhibitors. Microsomes derived from the U373 astrocytoma cell line are far more effective than canine-derived membranes in supporting this US2- or US11-dependent reaction. In contrast, the HIV-encoded Vpu membrane protein can cause the destruction of CD4 from either human- or canine-derived membranes. Using the in vitro system, we show that a truncation mutant of US2 that lacks the cytosolic domain is unable to catalyze degradation, whereas a similar truncation of US11 continues to catalyze degradation of class I heavy chains. Therefore, US2 requires both transmembrane and cytosolic interactions to trigger dislocation of heavy chains, whereas US11 relies on the transmembrane domain to target heavy chains. US2 and US11 thus utilize different targeting mechanisms for class I degradation.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Animais , Anticorpos , Astrocitoma , Citomegalovirus/genética , Glicosilação , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Humanos , Cinética , Glicoproteínas de Membrana/metabolismo , Microssomos/imunologia , Microssomos/metabolismo , Reação em Cadeia da Polimerase , Biossíntese de Proteínas , Dobramento de Proteína , Coelhos , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Transfecção , Células Tumorais Cultivadas , Microglobulina beta-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA